

Introduction

This document provides information on tuning the IRTF servos, and documents the custom
configuration of the PMAC controller. The PMAC controller is a PCI board in the TCS3
computer that drives the HA and DEC servo motors.

Section 1, is primary written by TCS3 Servo Engineer:

 1. Tuning the IRTF Servos

Section 2 thur 5, are relevant to the TCS3 programmer as it details software setup and
interactive with the PMAC. These sections are:

2. What is the PMAC?
3. Memory Map
4. Using Analog Tachometers.
5. Dual DAC on Each Axis
6. Initialize the absolute position (apos)

To understand the IRTF servo system, you must under the PMAC’s role, it configuration, and
parameter used to tune the system.

1. Tuning the IRTF TCS3 Servo System

1.1. Type of motion (How we track & slew using the PMAC)

For Slewing/MP, uses J=STEP to perform a point-to-point move. Here is an example slew session:

1. Set acceleration (Ix19), ix21 (S-curve time), inital Jog speed (Ix22).

 i119=0.0160 i219=0.0159 i121=1 i221=1 i122=0 i222=0 #1J+ #2J+

2. Setup tracking PID and VelFF for HA and Dec.

 i230=50000 i233=15000 i231=5000 i232=10000
 i130=60000 i133=15000 i131=3000 i132=10000

3. Start moving (ix22), insure Integrator is always on ON (ix34)

 i122=1.2077 i222=0.0158 #1J+ #2J+ I134=0 I234=0

4. Then at 20 Hz we issue adjustment to velocity to keep PMAC desired position
 in step with Virtual TCS.

 i122=0.2992 i222=0.001 #J+ #2J+

5. To exit tracking, just set velocity (ix22) to 0.

 i119=0.0160 i219=0.0159 i122=0 i222=0 #1J/ #2J/ I134=0 I234=0

For Tracking, adjust velocity using 'Ixx22=vel J+' to keep pmac position close to tcs3 vtcs position Here is an
example tracking session:

1. Set acceleration (Ix19), ix21 (S-curve time), inital Jog speed (Ix22).

 i119=0.0160 i219=0.0159 i121=1 i221=1 i122=0 i222=0 #1J+ #2J+

2. Setup tracking PID and VelFF for HA and Dec.

 i230=50000 i233=15000 i231=5000 i232=10000
 i130=60000 i133=15000 i131=3000 i132=10000

3. Start moving (ix22), insure Integrator is always on ON (ix34)

 i122=1.2077 i222=0.0158 #1J+ #2J+ I134=0 I234=0

4. Then at 20 Hz we issue adjustment to velocity to keep PMAC desired position
 in step with Virtual TCS.

 i122=0.2992 i222=0.001 #J+ #2J+

5. To exit tracking, just set velocity (ix22) to 0.

 i119=0.0160 i219=0.0159 i122=0 i222=0 #1J/ #2J/ I134=0 I234=0.

1.2. Tuning Goals

For tracking we wanted to keep the motor following error under 0.2 arcsecond band 95% of the time, And under
0.1 , 70% of the time, Or
Following error peak-to-peak values under 0.20 arcsec.
Following error standard dev. values under 0.03 arcsec.

We also wish to keep the velocity stable: not varying by more that 1.5 arcsecond/sec.
Velocity peak-to-peak values under 1.50 arcsec/sec.
Velocity standard dev. values under 0.30 arcsec.

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 1 of 8 Project: TCS3 Control System Upgrade

During tracking, we used 30 arcseond offset as the standard value to tune to. Our setting time goal is 2 seconds.

Based on TCS1 servo performance was measured in hist/0710/11oct_tcs1_data/.
For comparison, here is some TCS1 performance values:

 FollowingErr Velocity
 Date P-P STD P-P STD
 ---- ---- ---- ---- ----
2006/01 0.14 0.03 1.30 0.29 // tcs1 servo, but not tracking.
2007/10 0.38 0.05 3.50 0.46 // tcs1 observing at night.
2008/02 0.43 0.07 3.44 0.61 // tcs1 observing during daytime observing 26Feb.
2008/03 0.37 0.07 3.21 0.58 // 070306, after fixing TCS1 broken tac signal

The TCS1 offset deadtime is 2.0 seconds.

1.3 General Commons on Turning the IRTF Telescope

As it turned out the primary tuning values which were needed for the IRTF servo were:

PID – The standard P, I, and D. (No Surprise here)

Velocity Feed Forward – Extremely important in track mode during offset. Because an offset requires the
system to move quickly to the tracking position, VelFF was the key parameter which enabled TCS3 to meeting
it beam switch dead time goal of 2 seconds.

Using the (combined) Tachometers voltages as the velocity sensor also is necessary for stabilizing tracking after
an offset. During tuning we mistakenly mis-configured the PMAC to NOT use the tachometers as the velocity
sensors. After we discovered the problem, oscillation after the offset was eliminated. See example below.
Data from: http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/history/0711/

Graph on the left is a 30 arc second offset using encoders as velocity sensor. Graph on the Right is using the
tachometer as the velocity sensors.

Ix63 – Motor Integration Limit – In order to settling quickly (under 2 seconds) after a offset, the I gain needs to
be fairly high (above 10000). However, I > 5000 can make the system unstable as the integrator accumulates
too much value, therefore, setting the Integration Limit is important. We were about to monitor the I values
during operations and found the telescope can operation using I of under 2000 for HA, and about 2200 for DEC.
We set the limit to 2500 for both axis’s. If the telescope runs out of balance, then there may not be enough I-
terms to close the error, so it is very important to operation the telescope in balance.

Ix34=1 (Disable Integration). We experimented with Ix34 to disable integration during an offset, then turning it
back on. The theory was that, the I-value after the offset would be very close to the I-value before the offset
(thus having I change while closing the gap was not desired). However, we found that using higher I-gain with

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 2 of 8 Project: TCS3 Control System Upgrade

http://irtfweb.ifa.hawaii.edu/%7Etcs3/tcs3/history/0711/

the Integrator Limit achieved the desired offset goals. Disabling the Integrator was found to be detrimental
when the I needed to settle to a new value after the offset (especially in DEC). Holding off the I, just makes it
take longer to settle. Much of the experimenting with I-gain, limit, and Disable took place during 2008 between
Jan and Mar. Finally meeting all performance goals in march 2008:
Ref: http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/history/0803/
The rtcs has the ability to set Ix34=1 (disabling Integration) at the time an offset occurs. Ix34 is set to 0
(enabling Integration) when the following error of the PMAC’s dpos and vtcs is less that 0.2 arcseconds. This
feature was implement and tested. Works fairly well, an almost make the 2 seconds settling time (sometime
took up to 2.5-3 seconds). NOW TURN OFF IN TCS3..

The deadband feature (Ix64, Ix65) was tested, but found not very useful. The motor_following_error crosses
back and forth zero during offset. Using deadband make it offshoot more.

Ix35 (accel FeedForward) default is 0. Setting higher doesn't seem to help tracking or offsetting much. At
values above 7000, it make offset worse (axis goes to fast, and starts overshooting).

1.4. HA tracking

Auto PID values are 160000 15000 50. Auto Vel_ff is 23000.

P (Ix30):

P can be as low as 75000 up to 200000. 160000 give stiffer responds. Beyond a 160,000 the tracking following
error stats starts to increase.

D (x31):

High D is needed to dampen offsets.
Lower D give better offset performance.
Higher D give better tracking performance.
A value of 50 balances tracking and offset performance.

I (Ix33):

Large I-gain is good to settle the motor after an offset. Look like 15000 is needed since tracking East need lots
of I to setting.

Ix63, Motor XX integration Limit: For HA, Ix63 is set to 2500, to limit the amount of gain. I-values settle to
about 1800 during tacking + offsets.

Vel_FF (Ix32)
Velocity Feed forward (Ix32) is extremely helpful during offsets; it is part of the autoPID table.

Other Terms

Needed to modify the default Jog/Home S-Curve Time (Ix21) of 50 for tracking. 50ms will cause a ~50ms
latency when an offset occurs. For immediate response to offsets, rtcs sets Ix21=1.

Acceleration controlled using Ixx19. During Tracking it is set to 800 as/s^2.

The TCS3 rtcs will limit the PMAC velocity to 400 as/s.

1.5. HA Slewing (slew & MP mode)

AutoPID values are 80000 5 50.

During slew we don't care about following error, so minimal I-gain of 5 is used.

Acceleration is controlled using Ix21 (Jog/Home S-curve time)

 if(vel < 400 as/s)
 ix21 = 2000 (2 seconds)
 else
 ix21 = 4000 (4 seconds)

At speeds above 400 as/s the pmac is unable to maintain a stable velocity. We use the S-Curve feature to
provide a very relaxed acceleration curve for the telescope. Once the slew reaches 1800 as/s, the velocity should
varies under 20 as/s, and the following error should be peak-to-peak should be < 10 as.
TCS1 actually used a different board for slewing. They did not close the loop using position (as the pmac does),
but just has a simple velocity limiting circuit. Thus it was able to have a higher acceleration rate, and did not
suffer from this unstableness at higher speeds.

The PC will limit the PMAC velocity to 1800 as/s.

1.6. Dec tracking

PID values are 95000 9000 35. Vel_ff is 25000.

P-term.
Reasonable tracking (rates < 1as/s) can be achieved with P=80000. However, during offset
the dec axis trails the pmac profile. At the end of the offset, the following error
can be many arcseconds away (relying on I to close the error). A higher P, 95000, is needed
to keep this following error smaller.

D-term.
D is set to 35.

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 3 of 8 Project: TCS3 Control System Upgrade

http://irtfweb.ifa.hawaii.edu/%7Etcs3/tcs3/history/0803/

I-term.
After a N offset, I settles to about +200 (near zenith).
After a S offset, I settles to about -600 (near zenith)
(however, setting point can change a different position and balances)
Due to this high gain, I263=2500. The Motor Integrator Limit is needed to keep the system from going unstable.

The PC will limit the PMAC velocity to 400 as/s.

1.7. Dec Slewing

PID values are 50000 5 10.

Acceleration is controlled using Ix21 (Jog/Home S-curve time)
Ix21 = 1000 (1 seconds).

The PC will limit the PMAC velocity to 1800 as/s.

1.8. Comment s on D values when using the Tachometer as the velocity sensor.

The pmac is setup to use the Tachometer as the velocity loop sensors. The TAC a provide better
velocity data, but at a reduced resolution. It was estimated that switching between the encoder and TAC, the D
would need to be reduce by 120x. So a value of D=10,000 using the encoder would result in D=83 when using
the tachometer.

In fact, during 2007-sept/oct, we (mistakenly) had the pmac configured to used the encoder (I104=$3501). Here
is a note from then:
"High D is need to dampen when offseting. Going over 10000 provides better damping, but the motor start to
fighting with each other more, and we saw the motors fight each other after a slew. A value of 7000 is good as it
balances good tracking with reasonable damping for offsets."
When going to the velocity loop, the P general increased to 1.3x its values, vs the non-velocity loop value.

Also see section 4, Using Analog Tachometers.

1.9. Summary of PMAC tuning Ixx Variables

Maximum Jog/Home Accel Ixx19 default=0.15625 count/m^2; *Set at begining of
track/slew.
Jog/Home Accel time Ixx20 default=0 (ixx21 is in control). (NOT USED BY TCS3)
Jog/Home S-curve time Ixx21 default=50 *rtcs commands in realtime.

PID Proportional Gain Ixx30 * rtcs commands in realtime (if autopid is ON)
PID Integral Gain Ixx33 * rtcs commands in realtime (if autopid is ON)
PID Integral Mode Ixx34 * default=1; change to 0 in setup.
 0 means On all the time.
PID Derivative Gain Ixx31 * rtcs commands in realtime (if autopid is ON)

PID Velocity FF Gain Ixx32 * rtcs commands in realtime (in autopid table)

PID Accel FF Gain Ixx35

PID Notch Filter Coe N1 Ixx36
PID Notch Filter Coe N2 Ixx37
PID Notch Filter Coe D1 Ixx38
PID Notch Filter Coe D2 Ixx39

Max Jog/Home Acceleration Ixx19 * rtcs commands in realtime (track, slew, mv,mp)
Max Jog/Home Accel Time Ixx20
Max Jog/Home S-Curve Time Ixx21 * rtcs commands in realtime (track, slew, mv, mp)
Max Jog Speed Ixx22 * rtcs commands in realtime (Track, Slew, MV, MP)

Abort Deceleration Rate Ixx15

Net Desired Pos Filter Gain Ixx40
Desired Position Limit Band Ixx41

Motor Integration Limit Ixx63 * Set as part of setup. default=4,194,304.
 I163=2000 (HA axis).
 I263=2500 (Dec axis).

Deadband Gain Factor Ixx64 default=0
Deadband Size Ixx65 default=0

Position Error Limit Ixx67 default=4,194,304 (=262,144 counts)

Motor Friction Feedforward Ixx68 default=0

Output Command Limit Ixx69 * 13106 -> we limit the DAC output to 4v..

2. What is the PMAC?

The PMAC from Delta Tau Data System will perform the servo PID loop. This is a commercial PCI-based
servo controller board. The PMAC configuration is:

 Pmac controller with options:

400-603657-TRX - Turbo PMAC PCI Lite
5C0-0TURBO-OPT, Turbo CPU option-5C, default CPU-speed/memory config.
302-603657-OPT - On-board 8Kx16 Dual Ported RAM for PCI or USB.

Tac input A/D board:
3A0-602678-10x - ACC-28B, 2-channel A/D converter board
301-00028B-OPT - OPT-1, Additional on board 2-channels A/D converter

Cables:

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 4 of 8 Project: TCS3 Control System Upgrade

30P-0ACC8D-OPT - OPT-P, 40 cm (16 inch) cable with 60-pin IDC connector

Purchased but did not use:
306-0ACC8D-OPT - OPT-6, Quad 3-channel encoder isolate board
3D0-602205-10x - ACC-8D, PMAC(1) 4-channel breakout board
3B2-00028B-OPT - OPT-2B, 12-pin input terminal block

Vendor Home Pages is http://www.deltatau.com/

The tcs3 project purchased 3 PMAC. The board as installed as indicated below:

Host Serial Number
t1 95
t2 93
t1hilo 25

Output querying PMAC on host t2 on 3/18/2008:

IOR > CID
602191
IOR > CPU
DSP56303
IOR > DATE
06/11/2003
IOR > SIZE
26556
IOR > TYPE
TURBO1, X4
IOR > VERSION
1.940
IOR > VID
1 DELTA TAU

3. Memory Map - TCS3 use of RAM for the PMAC

3.1. PMAC DSP RAM usage - This section documents the non-standard use of DSP RAM.

We used the memory for Motor 30-32 for scratch area or variable storage. This section documents the locations
used:

 Motor 30 $000f00-$000f7f - general purpose
 Motor 31 $000f80-$000fff - motor 1 extra space
 Motor 32 $001000-$00107f - motor 2 extra space

 Motor 1

 y:$000f80 - plc0's m1 command value. I102 = $0f80

 y:$000f81 \ 2 consecutive Y addresses (y:$f81,$f82)
 y:$000f82 / are needed to hold the APE value for '$*'
 I3160 y:$000f8f - fake ADC (bias value) for ECT for TAC#1

 Motor 2

 y:$001000 - plc0's m2 commanded value. I202 = $1000
 y:$001001 \ 2 consecutive Y addresses (y:$1001,$1002)
 y:$001002 / are needed to hold the APE value for '$*'
 I3260 y:$00100f - fake ADC (bias value) for ECT for TAC#2

3.2. PMAC DPR usage - This section documents used of DPR (Dual Ported Ram).

 2.2.1 Open Buffer.

 The following is reserved for open buffer memory:

 PC_Addr PC_nbytes DSP_Addr DSP_nwords
 OpenBuffer 0x3450 0x0bb0 $60d14 0x2ec

 The table documents the used of open buffer memory:

 Desc PC_Addr PC_nbytes DSP_Addr DSP_nwords Notes
 ----------- ------ --------- ------- --------- ---------------
 plc0 0x3450 10*4=40 $60d14 10 (0xA)

4. Using Analog Tachometers

The TCS3 can use the motor shaft's DC Tachometer as a velocity sensor in the PMAC control loop. These notes
describe the setup for using the TAC output.

4.1 TAC description.

The TCS has 2 DC tachometers per axis. The T3 safety board electronics takes 2 tach DC output, then
combines/scale time so the PMAC receives 1 Analog voltage representing velocity.

The tachs output 12 volt/per radians. Gearing between motor shaft & telescope shaft is 144:1. The safety board
electronic divides the voltage input by 5. The 2 tach voltage are sum & divided by 2 before being output to the
pmac D/A board. The voltage obtained by the PC can be converted to velocity:

 V2AS = 5 / 12 / 144 * R2AS is appox 596.8310658.

 15 as/s ~ 0.0251 v
 2000 as/s ~ 3.3510 v

The PMAC is fitted with ACC28B, a 4-channel 16-bit analog to digital converter board.

The HA velocity voltage is sent to ADC#1.

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 5 of 8 Project: TCS3 Control System Upgrade

http://www.deltatau.com/

The DEC velocity voltage is sent to ADC#3.
(ADC#2 and #4 are unused)

The PMAC firmware provides an Encoder Conversion Table (ECT). The following describes how the ECT is
configure to used the HA, DEC voltage input as a velocity signal.

4.2 Definition of ECT. Entries 1-4 are default values.

Entry 1 is provides HA position input using the main shaft encoder.
Entry 2 is provides DEC position input using the main shaft encoder.

Entry Address Y-Word Conversion Method
--
 1 Y:$ 3501 $078000 1/T extension of location $78000
 2 Y:$ 3502 $078004 1/T extension of location $78004
 3 Y:$ 3503 $078008 1/T extension of location $78008
 4 Y:$ 3504 $07800C 1/T extension of location $7800C

4.3 Using "Integrated A/D conversion" method ($5)

Method $5 works by:

 1. ADC / 256
 2. * 32
 3. - bais store in X:reg

The ADC maps -/+ 10 volts to 0-65536. Therefore the bias term is 32768*32 = 1048576 ($100000)

 Y:$ 3505 $5F8006 Integrated A/D conversion of location $F8006
 Y:$ 3506 $100000 bias term (-32768*32)

The above should work for the PMAC, however, their is a bug in the firmware that prevents values below the
bias term to be used. After consulting with PMAC technical support, it was suggested we using the
Add/Subtract feature to work around this bug.

4.4 Using "Add/Subtract" method ($E)

Use 'add/subtract' method as a work-around. First we using 2 unused I-variables to hold the bias values. We
used I-variable from an unused motor (31,32) so they will be automatically saved. Below is the I-variable setup
for the TAC.
For details see c.wilson email:
~tcs3/public_html/tcs3/vendor_info/DeltaTau/ref/040206_cwilson_PMAC_Tach.txt

 I3160=256*32768 ; y:000f8f hold fake ADC (bias value) for ECT for TAC#1
 I3260=256*32768 ; y:00100f hold fake ADC (bias value) for ECT for TAC#2
 ; ECT Entries for TAC#1
 I8004=$1F8006 ; Unintegrated unsigned ADC from Y:$F8006 (ADC1)
 I8005=$180F8F ; Unintegrated unsigned ADC from Y:$000F8F(fake ADC = bias value)
 I8006=$E90405 ; Integrated results from: (-I8005) + I8004

 ; ECT Entries for TAC#2
 I8007=$1F800E ; Unintegrated unsigned ADC from Y:$F800E (ADC3)
 I8008=$18100F ; Unintegrated unsigned ADC from Y:$00100F(fake ADC = bias value)
 I8009=$E90708 ; Integrated results from: (-I8008) + I8007
 I8010=$0 ; end of table

Finally, configure the axes to use the tac data, by setting Ix04 - Velocity Loop Feedback Address:

 I104=$3507 ; set velocity loop feedback to Tach#1 for motor1 - HA (I8006 results)
 I204=$350A ; set velocity loop feedback to Tach#2 for motor2 - DEC (I8009 results)

4.5 Notes on scaling

The velocity resolution in the PMAC in terms of counts/as is very high 12401 counts/AS. This is extremely
high compared to cnt/as of encoder (~20). This is a 620:1 ratio.
See ~/public_html/systems/tcs3/computers/pmac/tach_scaling.xls.

Although the pmac manual suggests we scale Ixx09/Ixx08 some the resolutions are equal, our high ratio make
this difficult. Ixx09 is just a pre-scaling factor before the Ixx31 derivative gain. cwilson@deltatau.com suggest
we keep Ixx08 at 96, and reduce Ix09
to 1 to increase the efficed resolution on Ixx31. However keeping Ixx08/Ixx09 equal would allow easily
switching between single and dual feedback.

4.6 I/M-Variables to help look at values for debugging.

Defaults are:

 I8000 = $078000 ; 1/T Extension of Encoder 1
 I8001 = $078004 ; 1/T Extension of Encoder 2
 I8002 = $078008 ; 1/T Extension of Encoder 3
 I8003 = $07800c ; 1/T Extension of Encoder 4
 I8004 = $0 ; end of table

M-variables to look at ADC and ETC:

 m500->x:$3501,0,24 ; 'result' field for I8000 - 1/T encoder 2
 m501->x:$3502,0,24 ; 'result' field for I8001 - 1/T encoder 2
 m502->x:$3503,0,24 ; 'result' field for I8002 - 1/T encoder 2
 m503->x:$3504,0,24 ; 'result' field for I8003 - 1/T encoder 2
 m504->x:$3505,0,24 ; 'result' field for I8004
 m505->x:$3506,0,24 ; 'result' field for I8005
 m506->x:$3507,0,24 ; 'result' field for I8006 - ADC#1 integrated value
 m507->x:$3508,0,24 ; 'result' field for I8007
 m508->x:$3509,0,24 ; 'result' field for I8008
 m509->x:$3510,0,24 ; 'result' field for I8009 - ADC#3 integrated value

 m510->y:$78006,0,24 ; points to ADC value

4.7. Switching back & forth:

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 6 of 8 Project: TCS3 Control System Upgrade

Switch to using tachometers in the velocity loop:

 I104=$3507 ; set velocity loop feedback to Tach#1 for motor1 - HA (I8006 results)
 I204=$350A ; set velocity loop feedback to Tach#2 for motor2 - DEC (I8009 results)

To return to defaults Ixx04 values (using Inc encoder for vel loop input):

 I104=$3501 ; restore default velocity loop feedback value
 I204=$3502 ; restore default velocity loop feedback value

Notes about D-term values.

When using default, D term is positive and in the range of 6000.

When using tac inputs, note the analog values are scale and inverted so the resolution is 120x less. So 50 would
be equivalent to about 6000 (in the default mode).

5. Dual DAC on Each Axis

Notes on implementing the Dual DAC output per TCS Axis on the PMAC

5.1. DAC assignments

Each telescope axis has 2 motor requiring 2 pmac DAC per axis. We will assign the pmac DAC outputs as so:

 HA: DAC1,DAC3 ; default for motor 1 and 3
 DEC: DAC2,DAC4 ; default for motor 2 and 4

The general scheme is to have a PLC program run every servo cycle with a simple algorithm:

 dac0 = PID output from PMAC motor
 dac1 = motor 1 for axis
 dac2 = motor 2 for axis
 base1 = backlash value for dac1.
 base2 = backlash value for dac2.

 ; HA : dac0 neg for west; pos for east
 ; dac1 is west (negative)
 ; dac2 is east (positive)
 if(dac0 < 0)
 dac1 = -base1 + dac0; ; go west
 dac2 = base2; ; backlash
 else
 dac1 = -base1; ; backlash
 dac2 = base2 + dac0; ; go east

 ; DEC: dac0 neg for north; pos for south
 ; dac1 is north (negative)
 ; dac2 is south (positive)
 if(dac0 < 0)

 dac1 = -base1 + dac0; ; go north
 dac2 = base2; ; backlash
 else
 dac1 = -base1; ; backlash
 dac2 = base2 + dac0; ; go south

Based on some tcs1 engineering data, the following anti backlash torque was determined:

The west motor DAC range is 0-negative, base is about -0.31
The east motor DAC range is 0-positive, base is about 0.35

The north motor DAC range is 0-negative, base is about -0.30
The south motor DAC range is 0-positive, base is about 0.43

For TCS3 we will use a value of 0.30 for All Axis.

We use separate base values (base1&2) to allow different base values for each motor, and to include a bias
value to handle any calibration. Each PMAC card needs it own values (for example if you want 0.30 volts on
each value). The D/A conversion can vary by 0.05 volt on each DAC.

5.2. PMAC implementation notes:

The dual_dac program will run as PLC0.
Set I05 to 3 to enable foreground & background PLC.
Set I08 to 0 to run PLC0 every servo cycle.
DPR Variable Open buffer will provide the storage space need for the program. See section 3, memory map,
for details.

To cal base value: Base_volts * 2^16/20v.
For example,
 0.3v : 0.3v * 2^16/20 v = 983
 1.0v : 1.0v * 2^16/20 v = 3276.8

PMAC pdac value scaled by << 8, ie: +/10 V = +-32767 * 256.
Plc0 shift the cmd by 8 (cmd/256), so internal it is working with 16-bit data (range -32768 to 32767). When
writing the result to the DAC memory locate the results (adc1,adc2) are * 256 to scale back to pmac's format.
The base value can be set by changing the mvariables:

 M8071=983 ; m1_base1
 M8072=983 ; m1_base2
 M8081=983 ; m2_base1
 M8082=983 ; m2_base2

The software set the base values startup, see pm_initialize().
.
The Ixx02 pmac defaults are:

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 7 of 8 Project: TCS3 Control System Upgrade

 ixx02 default DAC Use in dual DAC code
 ---- ------ --- -------------------------------
 I102 $078003 DAC1 Motor1 DAC reassigned to WEST (neg)
 I202 $078002 DAC2 Motor2 DAC reassigned to NORTH (neg)
 I302 $07800B DAC3 Motor3 DAC reassigned to EAST (pos)
 I402 $07800A DAC4 Motor4 DAC reassegned to SOUTH (pos)

Motor Ixx02 Command Output Address will be modified to reference mx_adc0 in DPR.

 I102 = $0f80 ; default is DAC1, address $78003
 I202 = $1000 ; default is DAC2, address $78002

plc0 will
 read motor command values, m1 at y:$0f00, m2 at y:$0f01
 write adjusted DAC0 values to DAC1&2.
 write values to DPR for feedback

5.2. Switching back to single output mode, and other plc notes

4.2.1 Set to Single DAC per axis (factory default)

 disable plc 0 ; disable plc 0
 I102 = $78003
 I202 = $78002

4.2.1 Set to Dual DAC per axis (TCS3 default).

 I102 = $0f80 ; memory location for plc0. default is $78003
 I202 = $1000 ; memory location for plc0. plc0. default is $78002
 enable plc 0 ; enable plc 0

6. How the TCS3 initializes PMAC’s absolute position (apos)

6.1. How it done

 The pmac lack a command to directly initialize the axis's absolute value. PMAC assumes the AbsPosValue is
captured in memory and the '$*' command will set the axis' position. Since TCS3 will have the linux host set the
apos, we will write the APE to pmac RAM and issue the '$*' command.

6.2. I-variable setup

 I195=$a00000 ; ape value is a Signed 32-bit word
 I110=$f81 ; ape value is located at y:$f81,y:$f82

 I295=$a00000 ; ape value is a Signed 32-bit word
 I210=$1001 ; ape value is located at y:$1001,y:$1002

 Ixx95 (position format) is set:
 bit 23 0x0080 0000 equals 0x1 for signed values.
 bit 16-21 0x002f 0000 equals 0x20 for 32-bits data value.

 Ixx10 (position address) holds the address of the data:

 Ref: Ixx95 I-variable reference in Turbo PMAC Software Reference.

6.3. The setup files (ic/rtcs/m/setup) contain these values:

 ;--
 ; apv related setup. See notes/apos_initialize.txt documentation
 ;---
 M3100->Y:$000f81,0,24,U ; low 24-bits for 32-bit APE position (motor1)
 M3101->Y:$000f82,0,24,U ; high 8-bits for 32-bit APE position (motor1)

 M3200->Y:$001001,0,24,U ; low 24-bits for 32-bit APE position (motor2)
 M3201->Y:$001002,0,24,U ; high 8-bits for 32-bit APE position (motor2)

 I195=$a00000 ; ape value is a Signed 32-bit word
 I110=$f81 ; ape value is located at y:$f81,y:$f82

 I295=$a00000 ; ape value is a Signed 32-bit word
 I210=$1001 ; ape value is located at y:$1001,y:$1002

6.4. Example (setting motor 1 to -8388609, or 0xff7f ffff):

 M3100=$7fffff
 M3101=$ff
 $*

6.5. TCS3 function

The pm_apos_set() function in pm.c will set the apos for the tcs3. This should be executing only when the tcs3
is in idle mode.

Filename: T3-3001-Servo_Tuning_and_PMAC_conf.doc Last Edit:12/9/2008 Page: 8 of 8 Project: TCS3 Control System Upgrade

