
. . . . . .. . . . 

 

. . . . . . . . . . 

 

 

 
NASA Infrared Telescope Facility 

TCS SERVO SYSTEM: 
Mechanical Modeling 

 

Tim Bond    
May 12 / 2004 
Version 1.0 
 

 
 
 
 
 
 
 
 

 

UNIVERSITY OF HAWAII 
INSTITUTE FOR ASTRONOMY 
2680 Woodlawn Dr. 
Honolulu, HI 
96822 



. . . . . . .. . . 

 
 
 
 
 

    2 
 

 

Overview: 
The following is a document describing the work performed with respect to mechanical 
issues, for the TCS servo design.  

Early in the development of the new IRTF telescope control system (TCS) it was determined 
that we needed to fully define the servo system in order to understand its impact on overall 
system specifications. How the servo loop effected the specifications would also determine 
how other contributions to the image degradation (such as wind disturbances, encoder 
resolutions, nonlinearities….) would be handled. We decided that we needed to construct a 
simplified analytical mechanical model of the telescope, and to this model, we would apply 
our new TCS system in order to determine the final performance.  

A mathematical model was first constructed, and the governing differential equations were 
processed for a solution. In the end, the equations became unwieldy and it was decided that 
we would need to implement a computer mathematical package (Matlab) in order to solve the 
equations. After starting work in the package, we discovered that there were “built in” blocks 
and subroutines that could greatly simplify the modeling process for us. In the end, we simply 
modeled the entire system in Matlab Simulink. 

The first step in the process was to reverse engineer a JPL document that was produced in the 
preliminary stages of the IRTF development (mid 1970’s). The information used in that 
document was then used to construct a model of the IRTF in its current state – with its current 
analogue control system. Once we were happy with this model, we stripped the analogue 
control system away, and then began to implement the new digital control system. 

Our final model was lacking in any type of external disturbances, and so an effort was 
undertaken to add wind loading to the structure. It was felt that this would be the most 
significant external disturbance to the system, and a good test of the controls systems 
disturbance rejection. 
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JPL Model (5 DOF): 
 

Background: 

See JPL Interoffice Memo 3555-76-031: Dynamic Analysis of the 3M Mauna Kea 
Telescope, and Interoffice Memo 354-76-761: Preliminary Input Parameters for Servo 
Analysis Model. 
 
The JPL documents mentioned above, were extremely thorough in their development of an 
analytical model; however, there were several things that we felt we could / should improve 
upon.  
 
Firstly, the analytical model incorporated both the mechanical system as well as the control 
system into one single model. We needed to split the two systems apart in order that we 
would be able to replace the control portion in the future with our new digital system. The 
resulting mechanical portion of the model is the subject of this document. 
 
Secondly, we felt that we needed to add an extra degree of freedom to account for the fact that 
there were two drive motors on the IRTF, each with its own tachometer. The JPL model 
contained only a single motor with a single tachometer. We felt that this was a significant 
difference, and that we needed to model the two motor system in order to correctly determine 
the subtleties of the velocity loop (which ends up being the heart of the disturbance rejection 
system). 
 
Lastly we decided to add some random noise to the system in the form of wind loading. We 
felt that it was important to try to add some form of disturbance to the system in order to 
exercise the velocity loops of the servo.  
 
 

The 5 DOF Mechanical Model: 

A lumped mass model of the telescope was constructed with the following degrees of 
freedom: 
 
1) Telescope foundation. 
2) South pier, including the motor stator and gear case. 
3) Motor rotor and drive gears. 
4) Telescope yoke, tube, and bull gear. 
5) North pier. 
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Attached drawing #2401-1 shows the model in Fig. #1, with all of the variables defined. The 5 
governing equations for the five degrees of freedom were derived and listed below the model. 
It should be noted that all of the degrees of freedom are rotational.  
 
In the model, the kij’s are associated with stiffness (or rotational spring coefficients) between 
the elements, the Ji’s are the mass moment of inertia of the rotational elements, the bij’s are 
the damping coefficients between the elements, and the Øi’s are the angular position of the 
element. The values used for these coefficients are taken from the JPL derivation and are 
listed as follows: 
 
b01 = 35.929 x 106 N·m·s      J1 = 21743 x 103 kg·m2 

b12 = 0.168 x 106 N·m·s      J2 = 7897 kg·m2 
b23 = 0.260 x 106 N·m·s      J3 = 32629 kg·m2  
b34 = 0.088 x 106 N·m·s      J4 = 532716 kg·m2  
b45 = 0.373 x 106 N·m·s      J5 = 169475 kg·m2 
b51 = 0.254 x 106 N·m·s 
 
k01 = 4561 x 106 N·m        kk1 = 2.7397 x 10-3 N·m/volt 
k12 = 8993 x 106 N·m        m = .6044 x 106 N·m·s  
k34 = 587 x 106 N·m  
k51 = 955 x 106 N·m  
 
Details of how these coefficients are derived are given in the JPL documents. 
 

The 5 DOF MATLAB Model: 

 
From the differential equations, the Matlab model was created. The actual model is shown in 
the attached drawing #2402-1. The model takes as an input, a single torque (in N·m) and gives 
an output of position (in rad) of the telescope tube, and velocity (in rad/s) of drive motors. 
These are actually given relative to the south pier (J2), just as the actual encoders on the 
telescope would produce. 
 
 

Model Verification: 

 From the model, we are able to run simulations and determine where the “locked rotor” 
resonant frequencies were. It would be extremely useful if time permitted in the future, to 
attempt to determine the first few (lowest) natural frequencies on the actual telescope. This 
would be one method for confirming the assumed spring constants, and mass moments of 
inertia from the JPL document. 
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IRTF Model (6 DOF): 
 

Background: 

As was mentioned previously, we felt that one of the most important things for us to model 
was the disturbance rejection of the system, or more precisely - the effectiveness of the 
velocity loops.  

The model developed by the JPL staff contained only one motor with a single tachometer on 
it. The actual IRTF has two motors back-driving against each other, with an individual 
tachometer on each motor. We decided that we needed to add this second motor (and 
tachometer) to our model if we were really serious about using the model to simulate our 
telescope. 

 

The 6 DOF Mechanical Model: 

Again, a lumped mass model of the telescope was constructed, this time with the following 
degrees of freedom: 
 
1) Telescope foundation. 
2) South pier, including the motor stator and gear case. 
3) A - motor rotor and drive gears. 
4) B - motor rotor and drive gears. 
5) Telescope yoke, tube, and bull gear. 
6) North pier. 
 
Attached drawing #2403-1 shows the model in Fig. #1, with all of the variables again defined. 
The 6 governing equations for the 6 degrees of freedom are derived from the model and listed 
below it.  
 
In the JPL 5 DOF model, the stiffness and damping constants, associated with the motor rotor 
and gears, were determined experimentally from a test at KPNO (see JPL documentation). 
These values were added into the model, and simply applied in a negative sense if the motor 
was driving in a negative direction (this assumes zero backlash). What this means is that we 
can use the exact same values in our 6 DOF model, as each motors will only apply a moment 
in a single direction (opposing each other to remove the backlash).  
 
The model is shown in terms of its spring and damping coefficients, and its mass moments of 
inertia. Once again, the values used for these coefficients are taken from the JPL derivation 
and are listed as follows: 
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b01 = 35.929 x 106 N·m·s      J1 = 21743 x 103 kg·m2 

b12 = 0.168 x 106 N·m·s      J2 = 7897 kg·m2 
b23 = 0.260 x 106 N·m·s      J3a = 32629 kg·m2  
b34 = 0.088 x 106 N·m·s      J3b = 32629 kg·m2  
b45 = 0.373 x 106 N·m·s      J4 = 532716 kg·m2 
b51 = 0.254 x 106 N·m·s       J5 = 169475 kg·m2 
 
k01 = 4561 x 106 N·m        kk1 = 2.7397 x 10-3 N·m/volt 
k12 = 8993 x 106 N·m        m = .6044 x 106 N·m·s  
k34 = 587 x 106 N·m  
k51 = 955 x 106 N·m  
 
Again, details of how these coefficients are derived are given in the JPL documents. 
 
 

The 6 DOF MATLAB Model: 

 
From the differential equations, the Matlab model was created. The actual model is shown in 
the attached drawing #2404-1. The model takes as inputs, two torques (in N·m) and gives as 
outputs, position (in rad) of the telescope tube, and the two velocities (in rad/s) of the two 
drive motors. These are actually given relative to the south pier (J2), just as the actual 
encoders on the telescope would produce. 
 
 

Model Verification: 

Again, from the model, we are able to run simulations and determine where the “locked rotor” 
resonant frequencies were. It would be extremely useful if time permitted in the future, to 
attempt to determine the first few (lowest) natural frequencies on the actual telescope. This 
would be one method for confirming the assumed spring constants, and mass moments of 
inertia from the JPL document. 
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Disturbance Rejection: 
Wind Loading 
 

Background: 

Early in the TCS project, there were questions as to whether a velocity loop was really 
required in the servo design. Most of the literature studied, seemed to suggest that the velocity 
loop was imperative in order to meet the disturbance rejection requirements. We felt that in 
order to fully comprehend the importance of the velocity loops, we should try to add some 
form of disturbance to our model.  

In reality, one of the most significant of these disturbances is “wind loading”, and so we 
decided to add some form of wind loading to our model. 

It should be noted that the wind loading model used in the following calculations is by no 
means the “most correct” model. It is just a simple approximation as to what we might see at 
the telescope, and is really just used as a “ball park” approximation of a disturbance for 
testing our servo system’s disturbance rejection ability. The weaknesses in our model will be 
pointed out as we develop it in the following sections. 

 

Steady State Loading: 

A calculation was performed to determine the steady state loading on the top end of the 
telescope structure, due to a wind force.  

Our calculation is based on empirical data and is common in any standard fluid dynamics 
textbook. Details of the calculation are given in drawing #2405-1 and #2405-2. All of the 
assumptions made are noted in the drawings, and the final result may be summarized as: 

The approximate torque applied to the telescope axis due to drag induced by a 10mph wind on 
the top end structure is determined to be 488.1 N·m. 

The largest assumption made in this approximation is that the top end would be exposed to a 
free air velocity of 10mph. This is analogous to assuming that the telescope is sitting in a 
large open field, exposed to the 10mph wind. In reality, our telescope is located inside our 
dome, and is somewhat sheltered from a much larger (typically 30mph) wind speed outside of 
the dome.  
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Wind Power Spectral Density: 

In reality, the wind forces that the telescope will be exposed to will be time varying and 
somewhat erratic. This is a result of the turbulent flow inside the dome as well as the result of 
vortex shedding off of the structure itself.  

Much of the literature found on the subject of wind loading showed PSD curves that rolled off 
at higher frequencies. As a result we attempted to construct a model based on a “band limited 
white noise generator”. Theoretically, the PSD curve of this signal is a constant and so we 
simply processed the signal with a Butterworth Low-Pass filter with the desired cutoff 
frequency. The signal was then given the appropriate gain factor in order to produce an RMS 
value identical to the steady state value determined above. 

 

The MATLAB Wind Simulation Model: 

The Matlab model used for the wind simulation is shown in drawing #2406-1 and the scope 
results are shown below: 

 

The top trace is the signal passed through a 5 rad/s roll-off filter and the plot immediately 
below it is of the cumulative RMS value. 

The third trace is the signal passed through a 2 rad/s roll-off filter and the plot immediately 
below it is of the cumulative RMS value. 
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The fifth trace is the signal passed through a 0.2 rad/s roll-off filter and the plot immediately 
below it is of the cumulative RMS value. 

As can be seen, the peak to valley of the signal is approximately 3 times the RMS value, as 
would be expected for a normally distributed random variable. The assumption that we have 
made is that at the telescope, the 10mph value that we used for steady state loading is actually 
the RMS of what we would measure inside the dome. This may be somewhat conservative, 
and result in loads that are actually larger than we would see in reality. 

The end result is that the signal that is sent to the telescope tube in our telescope model is the 
signal selected above, normalized to give a RMS value of 500 N·m (as shown by the final 
gain block in the model). 

The three different values selected for roll-off were chosen arbitrarily. In reality, the 5 rad/s 
roll-off signal would be more difficult for the servo to correct, but the 0.2 rad/s signal seemed 
to be a more appropriate signal to use “intuitively”. The model was left with all three signals 
in it so that the user could select which one he felt was appropriate.  

 
















