
Programming: Variables

Programming: Variables
 
Variables are data holders that you can set and change within the program or over the communication channel.
 
The first 26 variables are long integers (32 bits) and are accessible with the lower case letters of the alphabet, a, b, c, . . . x, y, z.
 

a=# Set variable a to a numerical value as 
a=exp Set variable a to value of an expression

 
A variable can be set to an expression only one operator and two operands.  The operators can be any of the following:
 

+ Addition
- Subtraction
* Multiplication
/ Division
& Bitwise AND (see appendix A)
| Bitwise OR (see appendix A)

 
The following are legal:
 

a=b+c, a=b+3 a=5+8
a=b-c a=5-c a=b-10
a=b*c a=3*5 a=c*3
a=b/c a=b/2 a=5/b
a=b&c a=b&8
a=b|c a=b|15

 
ARRAYS
 

xxx, yyy, zzz.  The memory space that holds these 52 variables is more flexible however.  This same variable space can be accessed
with an array variable type.  An array variable is one that has a numeric index component, so that 

which variable a program changes
can be selected numerically, and therefore mathematically.  This memory space is further made 

flexible by the fact that it can hold 52
 thirty two bit integers, or 104 sixteen bit integers, or 208 eight bit integers (all signed). The array 

variables take the following form:
 

ab[i]=exp Set variable to a signed 8 bit 
value where index i = 0...200

aw[i]=exp Set variable to a signed 16 bit 
value where index i = 0...100

al[i]=exp Set variable to a signed 32 bit 
value where index i = 0...50

 
The index i may be a number, a variable a thru z, or the sum or difference of any two variables a thru 

z (variables only).
 
The same array space can be accessed with any combination of variable types.  Just keep in mind 

how much space each variable
takes.  We can even go so far as to say that one type of variable can be written and another read 

from the same space.  For example,
if you assigned the first four eight bit integers as follows:



 
ab[0]=0
ab[1]=1
ab[2]=0
ab[3]=0

 
that would occupy the same space as the first single 32 bit number, and due to the way binary 

numbers work, would make the thirty
two bit variable equal to 256 (see appendix A).
 
A common use of the array variable type is to set up what is called a buffer.  In many applications, 

the SmartMotor will be tasked with
inputting data about an array of objects and to do processing on that data in the same order, but not 

necessarily at the same time.
Under those circumstances it may be necessary to “buffer” or “store” that data while the SmartMotor 

processes it at the proper times.
 
To set up a buffer the programmer would allocate a block of memory to it, assign a variable to an 

input pointer and another to an output
pointer.  Both pointers would start out as zero and every time data was put into the buffer the input 

pointer would increment.  Every time
the data was used, the output buffer would likewise increment.  Every time one of the pointers is 

incremented, it would be checked for
exceeding the allocated memory space and rolled back to zero in that event, where it would continue 

to increment as data came in.
This is a first-in, first-out or “FIFO”, circular buffer.  You need to be sure that there is enough memory 

allocated so that the input pointer
never overruns the output pointer.
 
STORAGE OF VARIABLES
(Not available in SMXXX5 SmartMotors)
 
Each SmartMotor has 8K of non-volatile
EEPROM memory to store variables when they need to survive the motor powering down.
 
EPTR=exp Set EEPROM pointer, 0-7999
 
To read or write into this memory space you first need to properly locate the pointer.  This is 

accomplished by setting ‘EPTR’ equal
 to the offset.
 
VST(var,index) Store variables
 
To store a series of variables use the ‘VST’ command.  In the “var” space of the command you put 

the name of the variable and in
the “index” space of the command you put the number of variables following that variable that you 

also want to store.  Put a one here
if you only want to store the one variable specified.  The actual sizes of the variables will be handled 

automatically.
 
VLD(var,index) Load variables
 
To load variables, starting at the pointer, use the ‘VLD’ command.  In the “var” space of the 

command you put the name of the variable
and in the “index” space you put the number of subsequent variables you want loaded.
 



 
FIXED or PRE-ASSIGNED VARIABLES
 
In addition to the general purpose variables there are variables that are gateways into the different 

functions of the motor itself.
 

@P Current position
@PE Current position error
@V Current velocity
ADDR Motor’s self address
CHN0 RS232 comm error flags
CHN1 RS485 comm error flags 
CLK Read/write sample rate counter
CTR External encoder count variable
I Last recorded index position
LEN # of characters in RS232 buffer
LEN1 # of characters in RS485 buffer

 F=# Set factory defined state, where # != 1
F=1 Decelerate on contact with limit switch 
MFRATIO Magnitude of (MFMUL<<24)/MFDIV


