
THE

USER'S
GUIDE

UG 0002 (rev.1/02)

2

©2001, 2002 Animatics Corporation. All rights reserved

Animatics The SmartMotor™ User's Guide.

This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of
such license. The content of this manual is furnished for informational
use only, is subject to change without notice and should not be construed
as a commitment by Animatics Corporation. Animatics Corporation
assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be
reproduced, stored in a retrieval system or transmitted, in any form or by
any means, electronic, mechanical, recording, or otherwise, without the
prior written permission of Animatics Corporation.

Animatics, the Animatics logo, SmartMotor and the SmartMotor logo
are all trademarks of Animatics Corporation. Windows, Windows
95/98, Windows 2000 and Windows NT are all trademarks of Microsoft
Corporation.

Please let us know if you find any erorrs or omissions in this work so
that we may improve it for future readers. Such notifications should
be sent by e-mail with the words "User's Guide" in the subject line
sent to: techwriter@animatics.com. Thank you in advance for your
contribution.

Contact Us:

Animatics Corporation
3050 Tasman Drive
Santa Clara, CA 95054
USA
Tel: 1 (408) 748-8721
Fax: 1 (408) 748-8725
www.animatics.com

3

QUICK START 5

SMARTMOTOR™ INTERFACE SOFTWARE 13

 Talking to SmartMotors 13

 Addressing SmartMotors 14

 Using Macros 15

 Monitoring SmartMotor Parameters 16

 Advanced Polling 16

 Programming with SMI 19

 Transmit Setup 22

 SMI menu Commands 23

 Toolbar Commands 28

 Running SMI 31

THE SMARTMOTOR TUNING UTILITY 31

 Tuning Utility overview 31

 Quick Tutorial 31

 SmartMotor Tuning Utility Windows 34

 SmartMotor Tuning Utility Menus 35

 SmartMotor Tuning Utility Help 39

PROGRAMMING TABLE OF CONTENTS 41

 Creating Motion 45

 Program Flow 53

 Variables 59

 Encoder and Pulse Train Following 65

 System State Flags 69

 Inputs and Outputs 71

 Communications 81

 The PID Filter 89

TABLE OF CONTENTS

Continued on following page

4

APPENDIX A 95

 Understanding Binary Data 95

APPENDIX B 99

 ASCII Character Set 99

APPENDIX C 100

 User Assigned Variables Memory Map 100

APPENDIX D 103

 SmartMotor Commands 103

APPENDIX E 113

 Downloading the Software 113

APPENDIX F 115

 Screen by screen SmartMotor Interface installation 115

APPENDIX G 117

 SmartMotor Specifications 117

 SM1720 117

 SM2315 118

 SM2337 119

 SM2300 Series 120

 SM3400 Series 121

 SM4200 Series 122

 SM5600 Series 123

TABLE OF CONTENTS

Continued from preceding page

5

A SmartMotor™ is delivered without any peripheral equipment due to the
huge variety of systems and machines it can be used in. In order to make the
SmartMotor run, the following will be needed at a minimum:

1. A SmartMotor™

2. A computer running MS Windows 95/98, 2000 or NT

3. A DC power supply for the SM1700 through SM3400 series motors
 or AC power cord for the SM4200 through SM5600 series motors.

4. A data cable to connect the SmartMotor to the computer's serial
 port

5. Host level software to communicate with the SmartMotor

The first time user of the
SM1700 through SM3400 series
motors should purchase the
Animatics SMDEVPACK. It
includes the CBLSM1-10 data
and power cable, the SMI
software, the manual and a
connector kit.

The CBLSM1-10 cable (right) is
also available separately.

Animatics also has the following
DC power supplies available:

PS24V8A (24 Volt, 8 Amp) and PS42V6A
(42 Volt, 6 Amp)

Both power supplies will work with the DC
motors, but the PS42V6A supply allows the
motors to operate at higher speeds. Note
that the Speed-Torque curves are taken at
48VDC, the upper limit. Special care must
be taken when near the upper limit or in
vertical applications that can back-drive the

SmartMotor. Gravity influenced applications
can turn the SmartMotor into a generator and back-drive the power supply
voltage above the safe limit. Many vertical applications require a SHUNT to
protect the SmartMotor from damage. Larger open frame power supplies are
also available and may be more suitable for cabinet mounting.

For the AC SmartMotors, SM4200 through SM5600 series, Animatics offers:

CBLSMA1-10 10' communication cable

CBLAC110-10 10' 110 volt AC single phase power cord

QUICK START

Optional
SmartMotor™ cable
(CBLSM1-10)

WEB: www.smartmotor.com • PHONE: 408•748•8721 • FAX: 408•748•8725

Optional PS24V8A or
PS48V6A power
supply

"Many vertical
applications require a
SHUNT to protect the
SmartMotor from
damage"

6

CBLAC200-10 10' 208-230 volt AC 3 phase power cord

SOFTWARE INSTALLATION

Either the downloaded software (see Appendix E) or the SmartMotor
CD-ROM software can be installed with the following procedure. Any differ-
ences are noted.

Double click the downloaded file,
SMISetup.exe, or Setup.exe on the
SmartMotor CD-ROM. The SMI
Setup window (right) should now be
visible.

If the defaults are accepted on all of
the setup screens after this screen,
the software will be installed in the
C:/Programs/Animatics directory.
The Programs directory, that is
accessed from the Windows Start
button, will now have Animatics listed
as an option with four subdirectories;

SmartMotor Interface

SmartMotor Tuning Utility

SMI Help

SMIEngine Help

QUICK START

The SMI Setup
window

Appendix F is a
complete screen by
screen software
installation guide

Connecting a
SM2320D
SmartMotor using
a CBLSM1-10
cable assembly
and PS24V8A
power supply

7

A QUICK LOOK AT THE SMARTMOTOR INTERFACE

The SmartMotor Interface (SMI) is part of a suite of programs, that can be
downloaded free from our web site (www.smartmotor.com) or purchased from
Animatics Corporation on CD or a set of floppies. The suite runs on the MS
Windows 95/98, Windows 2000 or NT operating systems.

The software connects a SmartMotor, or a series of SmartMotors, to a computer
or workstation and gives a user the capability to control and monitor the status
of the motors directly from the computer. Every SmartMotor has an ASCII inter-
preter built in. It is not necessary to use SMI to operate a SmartMotor. The
interface does, however, allow the user the ability to write programs and down-
load them into the SmartMotor’s non-volatile EEPROM memory.

The suite includes the SmartMotor™ Tuning Utility, SMI Help and SMIEngine
Help in addition to the SmartMotor™ Interface itself. With these tools the
SmartMotor(s) can be tuned, addressed, monitored, tested and run from one
computer. The SmartMotor can operate in a variety of different configurations.
One or more motors can be completely controlled from a host computer, or by
a Master SmartMotor programmed to control the others. Alternatively, each
SmartMotor can have an independent program. The SmartMotor has three
basic functions: Motion Generation, Program Execution and Communica-
tions. Each SmartMotor can do all three simultaneously, although the user
should take care in implementing communications so as to avoid data collisions
when programming multiple SmartMotors to send data over the same network.

Every SmartMotor
has an ASCII
interpreter built in. It
is not necessary to
use SMI to operate
a SmartMotor.

QUICK START

The SMI suite is a
free download from
our web site (see
Appendix E) or it
can be purchased
on a single CD or a
set of floppies.

8

PREPARING TO RUN THE SMARTMOTOR

Make sure everything is connected properly (see diagram on preceding page)
then turn on the power supply and
computer. A red LED should light
on the motor indicating that it is
powered and ready to go to work.

From the Windows desktop click
on the Start button and then click
on Programs, Animatics and the
SmartMotor Interface.

The dark blue SmartMotor
Terminal window (right) should
now be on screen. This is the main
window that's used to communi-
cate with a SmartMotor.

Click Setup on the menu bar,
then click Configure Host Port
from the drop-down menu. The
Set Host Communications Port
window should now be on screen.

Select the Scan Ports button (lower left
corner) and the Communication Ports
window (below) should open.

This window only reports the status of
the computer’s serial ports and cannot be
edited. If a SmartMotor is found (COM1 in
the example) the Motor Responded box

will have a check mark in it and the other two boxes under COM1 will be blank.
If no motor is found (COM2) the No Motor Responded box will be checked.
The computer used for these examples only has two COM ports (1 and 2) so
the other COM ports (3 and 4) have Port Not Available checked. COMn isn’t
addressed.

If the motor being tested returns
similar results to those in the exam-
ple, the computer and SmartMotor
are properly interconnected and the
SmartMotor is ready to transmit and
receive data through its RS-232
serial port.

If no COM resource is available,
independent measures should be taken to obtain an available port. This could
be done either through system re-configuration or through the use of a USB to
RS-232 or similar port converter.

Set Host
Communications
Port window

Communication
Ports window

Selecting
SmartMotor
Interface from the
Windows' Start
button

SmartMotor
Terminal window

QUICK START

9

MAKING THE SMARTMOTOR RUN

This is a quick tutorial designed to help the new SmartMotor™ user get
started. The commands used here are only described in enough detail to help
in understanding what is happening.

Click on the button on the
SMI tool bar. A few messages
and responses will appear in
the blue SmartMotor Terminal
window (right).

Now the computer and the
SmartMotor are communicating
and ready for commands. The
example is showing the data
returned from the SmartMotor
used to get these screen shots.
The data returned from a different
motor may be quite different.

Transmitting commands

In the SmartMotor Terminal window type RSP (with CAPS LOCK on) followed
by the enter key. The SmartMotor should respond with a string of data in the
terminal window containing version information.

Type RP and then Enter. The motor responds with its current position (15879 in
the example, above). Rotate the SmartMotor’s shaft a little and type RP again.
Note the change in the position (25010, above).

The RP (Report Position) and RSP (Report Sample Period and version number)
are Report to Host commands and are only two out of over sixty that can be
used to query almost every aspect of a SmartMotor’s status and performance.
When any of the commands are entered into the SmartMotor Terminal window
they return whatever data the command solicits.

Initiating motion

Now enter the following lines into the Terminal window (omitting the comments
to the right).

A=100 ‘sets the Acceleration
V=1000000 ‘sets the maximum Velocity accelerated to
P=300000 ‘sets the target Absolute Position
G ‘Go, initiates motor movement

After the final G command has been entered, the SmartMotor will accelerate up
to speed, slew and then decelerate to a stop at the absolute target position.

SmartMotor
Terminal window
with example data

1000000 Scaled
Counts/Sample=
about 1860 RPM
for SM2300 series
motors and about
930 RPM for series
SM3400, 4200 and
5600 motors

The larger
SmartMotors
can shake and
move suddenly and
should be
restrained for
safety.

QUICK START

10

Monitoring motor status

Click on the button on the toolbar and the Polling
Motor 1 status window (right) will open. This window
shows the current status of the test SmartMotor
(number 1).

While the monitor is polling the motor, enter a new
position and repeat the G command to initiate the
move. With the monitor on, the progress of the move
can be seen. The changing of the Index Position
can also be seen as the encoder's index passes with
each revolution (Motors equipped with a variable res-
olution encoder do not have an index marker).

To stop the motor in the middle of a move, enter the X
command in the SmartMotor Terminal window. The
SmartMotor will decelerate to a stop at the same rate
the Acceleration parameter was last set (A=100).

Writing a user program

Press the button on the toolbar and the SMI2* program editing window
(below) will open. This window is where SmartMotor programs are entered and
edited.

Enter the following program in the editing window. It’s only necessary to enter
the boldface text. The text pre-
ceded by a single quote is a com-
ment and is for information only.
Comments and other text to the
right of the single quotation mark
do not get sent to the motor. The
text is usually used to describe
what’s going on at that moment
in the program. Pay close atten-
tion to spaces and capitalization.
The code is case sensitive and a

space is a programming element.

 PRINT(#13,”Start Position: “)
 ‘#13(=Enter) go to next line
 RP ‘Report Position
 A=10 ‘Set buffered acceleration
 V=888777 ‘Set buffered velocity
 D=10000 ‘Set buffered relative move
 MP ‘Set position mode
 G ‘Go, apply buffered values and begin
 relative move from current position
 SYNTAXerror ‘Invalid code used for tutorial
 TWAIT ‘Wait for move to nish
 WAIT=2000 ‘Allow for position settling

Polling Motor 1
dialog box.
(The number refers
to the motor
number)

Program editing
window.

If the SmartMotor
used in this test
needs a memory
module make sure
one is installed.

QUICK START

11

 PRINT(“End Position: “)
 RP ‘Report Position
 END ‘End program, include extra
 spaces after END for test

After the program has been entered, select File from the menu bar and
Save as . . . from the drop down menu. In the Save File As window give the
new program a name such as “MyProgram.sms” and click on the Save button.
The file name will replace the edit window title (SMI2*).

Transmitting the program to a SmartMotor

To check the program and transmit it to the SmartMotor, click on the button
located on the tool bar. A small window will open with Errors Found. Click OK
to close the new window. The error, “SYNTAXerror”, should now be colored red.
Click the button and the cursor will jump to the line with the error.

If there were additional errors the
 button would send the cursor

to the next error each time it
was clicked. The button steps
through the errors backwards, the

 sends the cursor to the begin-
ning of the program and the
sends it to the end.

The bottom status bar of the edit-
ing window should now have three
entries; Found Next Error, UNRECOGNIZED
TERM and Line 10 Col 1 (the present cursor posi-
tion if it’s located at the beginning of the line with the
error).

To correct the error, use the cursor to highlight just
the “SYNTAXerror” line, including the single quote
and the comment, “Invalid code for tutorial” and
press the delete key.

If the error had been a typo (TWAIP possibly) it
could have been fixed by highlighting just the error
(the P) and typing the proper letter (a capital T).

After the error has been corrected, click on the
button again. Some messages should start scroll-
ing down the SmartMotor Terminal window and a
progress bar showing SMI is transmitting the pro-
gram to the SmartMotor should also be on screen
(right).

Program editing
window with
“SYNTAXerror”
highlighted

Transmitting
program to
SmartMotor

QUICK START

12

Running the downloaded program

The programmed motor now returns data (the PRINT commands), and these
characters can cause errors in the data returned to the Polling Motor 1 window
(page 10). To keep this from happening click on the STOP button at the bottom
of the Polling Motor 1 window and then click on the toolbar to run the pro-
gram for the first time.

The SmartMotor accelerates at the rate set (A=10) to the programmed speed or
Velocity (V=888777) and then maintains that speed for the Distance (D=10000),
determined by the number of motor shaft rotations, and then decelerates to a
stop at the rate set by the Acceleration command (A=10). As the motor spins up
watch the data in the SmartMotor Terminal window. Run the program several
times by clicking on and watch the results.

Because servomotors operate based on position error feedback, position may
oscillate slightly.

Turn off the power to the SmartMotor and after a few seconds turn it back on.
The motor will run the resident program every time it is turned on until a new
program is downloaded. The SmartMotor will do this whether there’s a com-
puter connected to it or not. All it needs now is power.

QUICK START

13

SMARTMOTOR INTERFACE SOFTWARE

TALKING TO SMARTMOTORS

The dark blue SmartMotor Terminal window opens whenever the SMIsoftware is
turned on. If the window has been closed, another operation requiring its use will
open a new window.

To transmit a command to the SmartMotor in the SmartMotor Terminal window type
the command on a new line and Enter on the same line.

Any line, or part of a line, can be transmitted through the serial port by moving the
cursor to the line’s end or anywhere along the line and pressing the Enter key. Every-
thing to the left of the cursor position will immediately be transmitted to the SmartMo-
tor and the cursor will jump to the end of the listing, past the last line of text and after
a copy of what was just transmitted. If the highlighted line of text contains a macro,
the macro will be expanded and transmitted as well. Macros are explained later in
this chapter.

The Tab key sends the cursor to a new line after the last line of text without trans-
mitting any data to the SmartMotor, no matter where the cursor was located in the
SmartMotor Terminal window.

SMI is continuously monitoring the serial ports for data, so the asynchronous input is
displayed by the SmartMotor Terminal window.

More than one command can be entered on a line when separated by a space. For
example; RA RV RP reports Acceleration, Velocity, and Position.

The SmartMotor Terminal status bar displays the COM port, baud rate, and Default
Motor Address.

ECHO and ECHO_OFF Modes

The SmartMotor Terminal runs in either ECHO or ECHO_OFF mode.
In ECHO mode, the SmartMotors echo back every character they receive and the
SmartMotor Terminal refrains from displaying both the sent and received lines.
When in ECHO mode, SMI will warn the user if it fails to receive the expected echoed
response. In the ECHO_OFF mode, the terminal has no expectation of receiving
an echo of the command sent. The Send ECHO and Send ECHO_OFF sub-items
of the Communicate drop-down menu can serve to synchronize the SmartMotor
Terminal and SmartMotor(s). Otherwise, if SMI is expecting an echo and the motor
is not in echo mode, warnings will appear.

A single RS-232 SmartMotor can operate in either state, but a daisy chain of RS-232
SmartMotors must operate in ECHO mode for data to get through the network.
RS-485 SmartMotors must operate in the ECHO_OFF mode or there will be data col-
lisions.

The third item on the SmartMotor Terminal status bar displays “Echo” if the Terminal
is in the ECHO mode.

Note: When operating in ECHO_OFF mode the SmartMotor Terminal window has
no way to synchronize with SmartMotors. If the values appear to be incorrect in the
Polling Motor window, STOP the polling and START it again using the buttons at the
bottom of the window.

The SMI software
uses the ECHO
feature to Auto-
Address a Daisy
Chain of
SmartMotors.

Motors using RS-485
must address
themselves by way of
a stored program.

14

Addressing SmartMotors

In general, a single SmartMotor doesn't have to be addressed before using
SMI. All of the motors in multiple SmartMotor installations (daisy chain) must
be addressed first, otherwise the SmartMotor Terminal window may not work
properly. The software stores information about each of the SmartMotors as
their addresses are assigned.

Addressing the SmartMotor(s) can be done by selecting:

Communicate from the Menu
bar and Address Motor Chain
from the drop-down menu.

OR Click the button on the
Toolbar

OR Enter an & (ampersand)
character in the SmartMotor
Terminal window.

When a single motor is addressed it
should return results similar to those
shown in this window to the right.

Changing the baud rate

When switching to a different baud
rate, change the motors baud rate
first, and then change the SMI baud rate. The supported rates are 2400, 4800,
9600, 19200 and 38400.

To change the SmartMotor’s and SMI’s
baud rate, click on the Communicate
drop-down menu and click on Send
New Baud Rate. If the changes are to
be used whenever SMI is started, click
Setup on the menu bar and from that
drop-down menu select Configure Host
Port and then Save at the bottom of the Set Host Communications Port
window. When the Send New Baud Rate command is chosen, the Saving
Baud Rate window (left) gives instructions for saving the new settings.

SMARTMOTOR INTERFACE SOFTWARE

Data returned after
addressing a single
SmartMotor

If a SmartMotor is
powered on with
no program in its
memory, it defaults
to 9600 baud.

Saving Baud Rate
window

Set Host
Communications
Port window

15

SMARTMOTOR INTERFACE SOFTWARE

Using Macros

Macros are used to store frequently used single commands or multiple com-
mand strings.

The maximum number of macros that can be recalled is 50, the maximum
number of characters in a macro’s name is 20 and the command string charac-
ter limit is 220. Up to 4 Macros can be nested (a macro contained within another
macro). The macro list is loaded when SMI is opened and saved when SMI is
closed.

To define a macro use the following syntax followed by the enter key:

%MacroName Commands%

For example this line: %CmdS RA RV RP% defines a macro named CmdS
which issues the RA, RV and RP commands (Notice the lower case letters in
the title, CmdS).

To run a macro use the following syntax followed by the enter key:
/MacroName

Macro’s are case sensitive and the title must be
entered exactly as it was typed. On the right is the
error message received if a mistake is made.

To run the macro defined above enter the title
exactly as it was typed: /CmdS

To list all of the defined macros select:

Communicate from the Menu bar and List Macro Definitions from the
drop-down menu

OR enter // in the SmartMotor Terminal window.

To delete an existing macro type: -MacroName

To edit an existing macro, type: +MacroName

Macro transmit
error window. Click
on OK, retype the
macro’s name and
try again

16

MONITORING SMARTMOTOR PARAMETERS

The Polling Motor window displays the SmartMotor’s current status and
 parameter values.

To open the Polling Motor window, select:

Communicate from the Menu bar and Monitor
Status from the drop-down menu

OR click on the button on the Toolbar

The most commonly used SmartMotor parameters
are shown in this window. When the window
is first opened, it immediately starts polling the
SmartMotor(s) and updates the parameters.

Polling can be stopped with the STOP button and
restarted with the START button at the bottom of the
Polling Motor window. The CLOSE button closes
the window. This window is read-only and cannot be
edited.

Typing data into the SmartMotor Terminal window will pause the data stream to
the Polling Motor window. Polling remains paused until the command is finally
transmitted to the motor with the enter key.

If a program is written that transmits data through the serial port (the PRINT
commands), it may conflict with the data displayed in the Polling Motor window.
If this type of data is being used, stop polling.

Advanced Polling

The Advanced Polling window displays up to eight user defined parameters.

To open the Advanced Polling window select:

Communicate from the Menu bar and Advanced Status from the drop-
down menu

OR click on the button on the Toolbar

The value of a variable, status of a port or other
customized parameters need to be monitored. Like
the Polling Motor window, the Advanced Polling
window (right) sends out report commands to the
motor(s) in the background and shows the received
responses in the window. If any of the blocks on the
left side of the window are clicked, the Standard Poll-
ing Variables window will open.

These polling variables can be selected to replace
the block clicked. For example click on the first block (the a block) in the
Advanced Polling window, and click on the KP button in the Standard Polling
Variable window. Then click on CLOSE. A window will open with instructions
on how to save the advanced polling settings. Close the window to return to

SMARTMOTOR INTERFACE SOFTWARE

Advanced Polling
window

Polling Motor
window

17

SMARTMOTOR INTERFACE SOFTWARE

the Advanced Polling window. Now the a in the first
block is changed to KP. Press the START button to
start polling the motors again. The value of the KP
parameter should be in the data box on the right side
(250 in the example, right).

Note: Pressing any of the blocks on the left side of the
Advanced Polling window will automatically stop poll-
ing. It can only be restarted with the START button.

At times it’s necessary to monitor the status of a hard-
ware port or an internal SmartMotor variable. Polling
parameters can be customized using the Advanced Watch Settings window
(below). To open the window, click on the Advanced button on the lower right
corner of the Standard Polling Variables window.

The following is a description of each data entry box
in the Advanced Watch Settings window:

Command String: The actual data transmitted
to the SmartMotor(s).

Caption String: Data displayed in the boxes
on the left side of the Advanced Polling
window.

Target Address: If there is more than one
SmartMotor, enter the address of the motor to
monitor.

Logical Mask: Enter the logical mask (in
base 10) to apply to the SmartMotor response.
If this value is “0” no mask is applied.

True caption: The data displayed if the final response value is
not zero. The final value of the response is calculated by ANDing the
SmartMotor’s response with the logical mask value.

False caption: The data displayed if the final response value is zero.
The final value of the response is calculated by ANDing the SmartMotor’s
response with the logical mask value.

Global Command Delimiter: The command delimiter in the command
string. Usually commands are separated by one space.

Fetch Entry: Fetches current user defined configuration and
updates the window entries.

Clear Entry: Resets the current entry to null settings.

Set Entry: Places the settings in current watch configuration

Close: Saves any changes and closes the window.

Monitoring the KP
parameter in the
Advanced Polling
window

Advanced Watch
Settings window

18

Advanced Polling Example

The following example shows how to set the advanced
polling parameters to monitor motor data.

1. Click on the a box in the Advanced Polling
window. The Standard Polling Variables window
will open.

2. Click on the Advanced button. The Advanced
Watch Settings window (right) will open.

3. Enter the commands to be sent to the SmartMotor
in the Command String box. In this example the
analog value of port C needs to be monitored.
Note that there must be a space between a=UCA
and Ra.

4. Enter a title for the string in the Caption String box (Port C analog in the
example)

5. If the SmartMotor is part of a daisy chain, enter
the motor's address in the Target Address box
and modify the title in the Caption String to
reflect the motor being polled. If there is only
one motor connected to the computer the Target
Address box can be ignored.

6. Click on the Set Entry button, and then close the
window. Close the Standard Polling Variables
window.

7. In the Advanced Polling window, press the
START button and watch the selected parameter polling (above).

Note: Lengthy command strings can cause communication errors. Advanced
polling parameters are polled in the background and programs that send char-
acters through the serial port during polling may cause problems.

Saving and loading advanced settings

Advanced Polling window settings can be
saved for future use. Click on Menu and
select Save Watch File from the drop-down
menu. In the save window, enter a name for
the file. To load a previously saved file, select
Load Watch File from the drop-down menu.

SMARTMOTOR INTERFACE SOFTWARE

Advanced settings
for monitoring
custom
parameters.

Monitoring the
analog value of
port C

Saving and
loading advanced
settings

19

SMARTMOTOR INTERFACE SOFTWARE

PROGRAMMING WITH SMI

This section focuses on the SMI tools used to create and edit SmartMotor
 programs. Later sections will focus on actual programming.

To create a new program file, select:

File from the Menu bar and New from the drop-down menu

OR Click on the button on the Toolbar

OR Press the Ctrl+N keys.

A new window will open (below).

This is a simple text-editing window that's used to edit or create new programs.
It works like all Windows based text editors with all of the Cut, Copy, Paste and
Delete capabilities. When a new edit window is opened, it will have a default
name (SMI2 in this example).

Saving program files

The currently active program can be saved by selecting:

File from the Menu bar and Save or Save As from the drop-down menu.

OR Click on the button on the Toolbar

OR Press the Ctrl+S keys for Save or Shift+Ctrl+S for Save As.

Program edit
window

There are several
sample programs in
the SMI Help file.
Just copy and paste
them into the SMI
text editor.

20

When saving a document for the first time, SMI displays the Save As window so
the document can be named before it is saved. To change the name of an exist-
ing document, use the Save As command. There are two types of documents
that can be saved by the SMI software:

• Program source files (.sms).

• ASCII source files (.src).

A SmartMotor Terminal window can be saved with file extension .mon, but it
will be read only when it is reopened, which means it can’t be modified and com-
mands can’t be sent to the motors through it. Only one SmartMotor Terminal
window can be open at a time. To use a saved window, close the open Smart-
Motor Terminal window and open the saved window by clicking on File on the
menu bar and then Open from the pull down menu and then double click on the
file desired.

Loading program files

To open a previously saved program, select:

File from the Menu bar and Open from the drop-down menu.

OR Click on the button on the Toolbar

OR Press the Ctrl+O keys.

Use this command to open an existing program source document or terminal
document in a new window.

Use the Open command to open ASCII source files (with extension .src) if the
ASCII source type was selected. The file is automatically renamed with a .sms
extension. This replaces the Import ASCII Source command in older versions
of SMI.

Building (Compiling) an SMI program

Check and Compile a program by
selecting:

Edit from the Menu bar
and Make SmartMotor Exe-
cutable from the drop-down
menu.

OR Click on the button
on the Toolbar

OR Press the Ctrl+E keys.

The program is scanned for syntax and statement label errors. A window will
show the end of scanning. If no errors were found, the first pane of the Edit
window Status bar will have the Scanned Code message as SMI builds both
the un-compiled .smx, and compiled, .sm, program files.

After the program has been compiled a small message box will be displayed
stating: No Errors Found: SMX Executable Size followed by a number indicat-

SMARTMOTOR INTERFACE SOFTWARE

Compiling a
program with no
errors

21

SMARTMOTOR INTERFACE SOFTWARE

ing the number of program executable bytes that will be used when this file is
downloaded. Just click on OK to continue.

If errors are found, the message box will state Errors Found and the errors will
be colored red.

Locating the Errors

The following are shortcuts for moving the cursor around the editing window:

To go to the beginning of the program, select:

Edit from the Menu bar and Go To Top Of File from the drop-down
 menu

OR Click on the button on the Toolbar

OR Press Ctrl+Home on the keyboard

To go to the end of the program select:

Edit from the Menu bar and Go To End Of File sub-item from the drop-
down menu

OR Click on the button on the Toolbar

OR Press Ctrl+End on the keyboard

To go to the next error position select:

Edit from the Menu bar and Find Next Error from the drop-down menu

OR Click on the button on the Toolbar

To go to the previous error position select:

Edit from the Menu bar and Find Previous Error from the drop-down
menu

OR Click on the button on the Toolbar

Downloading programs to a SmartMotor

To download a program to the SmartMotor select:

File from the Menu bar and Transmit Program to Motor from the drop-
down menu.

OR Click on the button on the Toolbar

OR Press the Ctrl+T keys.

Use this command to transmit the compiled source code of the presently active
document window to the default-addressed SmartMotor.

This command first scans the currently active source document code for syntax
and statement label errors. If any errors are found, they are treated as they were
in the Building (Compiling) an SMI program section.

If you press the
 button without

Building or
Compiling your
program first, it will
compile
automatically,
saving you the extra
step.

22

If scanning the program finds no errors, the file will be compiled and transmitted
to the addressed SmartMotor.

The integrity of downloaded code is validated by checksum. If the configuration
defines more than one motor, then the user defined default motor will receive
the file. Note that the source code comments are not sent to the SmartMotor.

If SMI finds an older SmartMotor not capable of handling a compiled file, it will
issue a warning and transmit a .sm format file instead.

Note: Older SmartMotors can be found with less or slower memory than has
been shipping since roughly year 2000-on. Programs exceeding 8k should not
be downloaded to the older 8k EEPROMS. SMI does not have the capability
to determine the EEPROM capacity of a specific SmartMotor. Repeated check-
sum errors can be solved by issuing the ES400 command, slowing the program-
ming and reading rate from 1,000bps to 400bps.

Transmit Setup

The Transmit Setup window (right) can be
used to define the functionality of the Trans-
mit Program command.

The Transmit Setup window is accessed by
selecting:

File from the Menu bar and Transmit
Setup… from the drop-down menu.

It can be setup to always transmit the cur-
rent program or a program stored in a file.
When transmitting the current program, high-
light the editor window that contains the pro-
gram to send.

For a one-time occasion, use the Transmit Now button to use the currently dis-
played configuration and then press Cancel so the changes to the setup are not
saved.

Check the Transmit Version 3 Format to transmit a current program in the .sm
format.

Uploading a program from a SmartMotor

To upload a SmartMotor's program, select:

File from the Menu bar and Receive Program from Motor from the drop-
down menu

A new edit window will open and the SmartMotor's program will be uploaded to
it. The program can then edited, saved and transmitted back to the motor. Note
that the uploaded program has no comments. They were stripped off when the
program was transmitted to the SmartMotor. Additional and unprintable com-
piler codes are removed during upload.

SMARTMOTOR INTERFACE SOFTWARE

The Transmit
Setup dialog box

SmartMotor(s) must
be addressed
before a program
can be downloaded
to them.

23

SMI MENU COMMANDS

This section describes the SMI Menu bar pull down menus. Many of these
commands are also discussed in the SMI programming section.

File pull down menu:

New: (Ctrl+N) Create a new file in a new docu-
ment window.

The file format is RTF (Rich Text Format). It
cannot be read directly by an ASCII editor.

Open: (Ctrl+O) Open an existing document or
terminal document in a new window. This com-
mand can be used to open ASCII source files
(with extension .src) if the “ASCII source” choice
was picked.

Close: (Ctrl+W) Use to close an
open document window. If a
modified document is not saved,
SMI displays a message asking
whether the changes should be
saved.

Save: (Ctrl+S) Use this command
to save the active document to its
current name and directory. When
a document is saved for the first
time, SMI displays the Save As
window so it can be renamed.

Save As: (Shft+Ctrl+S) Use this
command to save and name the
active document. SMI displays the
Save File As dialog where the
document can be named and then
saved.

Print: (Ctrl+P) Opens the Print
window (right) where the number
of copies to be printed can be set
and the destination printer, and
other printer setup options can be
selected or changed. When OK is clicked the document will print.

Print Preview: Disabled.

Print Setup: Opens the Print Setup window
(left) where the printer, printer connection, paper
size, and paper orientation can be selected and
changed.

SMARTMOTOR INTERFACE SOFTWARE

File menu

Open File dialog

Print window

Print Setup
window

24

Transmit Program To Motor: (Ctrl+T) Download the program in the cur-
rently active window to the SmartMotor(s).

Transmit Setup: Adjust settings for downloading programs.

Receive Program from Motor: Receive a program from the default
addressed motor to a newly opened window.

Exit: (Ctrl+Q) End the SMI application session.

Edit pull-down menu

Undo: (Ctrl+Z) Reverses previous editing
operation in the currently active document
window, if possible. SMI provides only the
most minimal support for the Undo opera-
tion.

Cut: (Ctrl+X) Deletes the highlighted data
from the currently active document and
moves it to the Windows clipboard.

Copy: (Ctrl+C) Copies the highlighted
data from the currently active document to
the Windows clipboard.

Paste: (Ctrl+V) Pastes data from the Win-
dows clipboard into the currently active
document.

Select All: (Ctrl+A) Selects (highlights) the entire data in the presently
active document, making it ready for global cut or copy operations to the
windows clipboard.

Find: (Ctrl+F) Displays a “Find” dialog
to perform a text string search in cur-
rently active document (left).

Find Next: (F3) Repeats previous Find
text search operation in the currently
active document.

Replace: (Ctrl+H) Displays the
Replace window to perform Find and
Replace operations in the currently
active document (left).

Find Next Error: Places the cursor at
the next error in the currently active
source file.

Find Previous Error: Places the cursor at the previous error in the cur-
rently active source.

Go To Top Of File: Places the cursor at the beginning of the currently
active source file document.

SMARTMOTOR INTERFACE SOFTWARE

Edit pull down
menu

Find window

Replace window

25

Go To End Of File: (Ctrl+End) Places the cursor at the end of the currently
active source file document.

Make SmartMotor Executable: (Ctrl+E) Scans source code within the
currently active document for syntax and statement label errors and cre-
ates both uncompiled and compiled program files.

View Menu Commands:

Toolbar: Shows or hides the tool bar.

Status Bar: Shows or hides the status bar.

Communicate Menu Commands:

Talk to SmartMotor(s): Opens the SmartMotor
Terminal window, if it is not already open.

Address Motor Chain: Automatically addresses
the motors connected to the serial port. This
only works with an RS-232 Daisy Chain.

Monitor Status: Opens the Monitor Status
window, if not already open and starts polling
the default addressed SmartMotor.

Advanced Status: Opens the Advanced
Monitor Status window, if not already open.

Set tuning: Displays the Set Tuning Parameter
window.

Report Tuning: Requests the tuning parameters from default addressed
SmartMotor and displays them in the Terminal window.

Send ECHO: Sends a global ECHO command to all SmartMotors. After
this command is received, a SmartMotor receiving commands or data will
echo it to the next motor or back to the terminal.

Send ECHO_OFF: Sends a global ECHO_OFF command to all
SmartMotors. After this command is received, a SmartMotor receiving
commands or data will not echo it to the next motor or back to the
SmartMotor Terminal.

Send END: Sends a global END command to all SmartMotors.

Send RUN: Sends a global RUN command to all SmartMotors.

Send New Baud rate: Issues the new bit-rate to all SmartMotors and then
changes the SMI bit-rate to the new value. The new bit-rate is displayed in
the second pane of the SmartMotor Terminal Status bar.

Report Variables:

Report a…z: Request default addressed SmartMotor to report the value
of variables a through z (version 3.4 and earlier SmartMotors only have
variables a through j).

SMARTMOTOR INTERFACE SOFTWARE

Communicate
menu commands

26

Report aa…zz: Request default addressed SmartMotor to report the
value of variables aa through zz (not available for Version 3.4 and earlier
SmartMotors).

Report aaa…zzz: Request default addressed SmartMotor to report the
value of variables aaa through zzz (not available for Version 3.4 and earlier
SmartMotors).

Report ab[0]…ab[200]: Request default-addressed SmartMotor to report
the value of 8 bit variables ab[0] through ab[200] (not available for Version
3.4 and earlier SmartMotors).

Report aw[0]…aw[99]: Request default-addressed SmartMotor to report
the value of 16 bit variables aw[0] through aw[100] (not available for Ver-
sion 3.4 and earlier SmartMotors).

Report al[0]…al[50]: Request default-addressed SmartMotor to report the
value of 32 bit variables al[0] through al[50] (not available for Version 3.4
and earlier SmartMotors).

List Macro Definitions:

List user macro definitions to the SmartMotor Terminal window.

Setup Menu Commands:

Configure Host Port:

Displays the Set Default Communications Port dialog.

Tools Menu Commands:

Diagnose Communication: This command
displays the Serial Communications
Checklist window. If there is a communi-
cation problem with a SmartMotor, choose
Tools from the menu bar and Diagnose
Communications from the drop-down menu.
This should turn on the Serial Communica-
tion Checklist window (below)

Read all of the lines on the
left side and press the button
to the right (if any) or do what
is recommended.

Virtual Engineer: (future)

Motor Sizer: (future)

Tuning: The Tuning Utility is
a stand-alone tool that can
be used to plot the position of
the shaft as it makes a quick

SMARTMOTOR INTERFACE SOFTWARE

Serial
Communication
Checklist window

Tools
drop-down menu
commands

27

step motion. It has an integrated interface
that allows the user to easily modify the P.I.D.
Parameters and update them on-the-fly. The
Tuning utility is detailed in a later section.

Motor Solver: (future)

Application Simulator: (future)

Timing Analyzer: (future)

Coordinated Motion: This is another stand-
alone tool that manages the sending of coor-
dinate data to SmartMotors.

Window Menu Commands

Cascade: Arranges the open document windows in overlapped fashion
within the main program window.

Tile: Arranges the open windows in a non-overlapped fashion within the
main program window.

Standard Poll: Brings the Standard Poll dialog into focus (useful if no
mouse is in use).

Advanced Poll: Brings the Advanced Poll dialog into focus (useful if no
mouse is present).

Keypad Entry: Brings the Keypad Entry dialog into focus (useful if no
mouse is present).

Advanced Entry: Brings Advanced Entry dialog into focus (useful if no
mouse is present).

Help Menu Commands

Help Topics: Displays the SMI application
help contents page.

Optional Message Boxes: The SMI applica-
tion displays some message dialogs that the
user may select not to show again. To allow
the user to reset all option message dialogs to
reappear, this command displays
the Reset All Message Dialogs
to open the window.

About SMI: Displays the About
SMI dialog indicating the SMI ver-
sion number.

Terminal Macros: Displays the
Terminal Macros dialog window, a
quick macro functions reminder.

SMARTMOTOR INTERFACE SOFTWARE

Window drop-
down menu

Help drop-down
menu

Help topics

28

TOOLBAR COMMANDS

The following table summarizes the functions of the Toolbar buttons:

SMARTMOTOR INTERFACE SOFTWARE

Toolbar button
description table

29

30

31

TUNING UTILITY OVERVIEW

The SmartMotor tuning is not done with the traditional turning of pots on
an amplifier. These physical components have been replaced with firmware
and host level software. The Tuning Utility is the host level component that
aids in the selection of the absolute best values for optimal performance for
a given loading condition. With this utility the values of KP, KI, KD, KL,
KS, KV, KA, and KG can be changed and the motor’s response to a step
change in target position can be seen. A later section titled "The PID Filter"
describes the functions of the different terms and the optimization process
in detail.

A QUICK TUTORIAL

This section is a quick guide for getting started using the SmartMotor
Tuning Utility software.

Running the Tuner pro-
gram

The Tuning utility was
installed as part of the
SmartMotor Interface soft-
ware. To open the utility
click on the Windows Start
button and then click on
Programs, Animatics and
the SmartMotor Tuning
Utility. The Tuning Utility's
main window, right, should
now be on screen. The
tuning utility can also be launched from the tools menu of the SMI.

Setting up the Tuner

 Click on the Setup… button

 OR select Tuner Setup… from the Motor drop-down menu.

The Setup dialog box should now
be on screen, right.

Make sure the following default
values are set in the dialog box:

Peak Velocity: 10000000
 (The Maximum Velocity)

Peak Acceleration: 10000000 (The Maximum Acceleration)

Position Offset: 500 (The relative position change)

Number of Samples: 50 (Total number of samples taken)

The SmartMotor
Tuning Utility’s
main window

SMARTMOTOR TUNING UTILITY

NOTE:

The Tuning Utility
instantly rotates the
motor’s shaft at
maximum allowed
acceleration and
velocity for a
quarter of a turn,
to an abrupt stop.
This can cause the
motor to shake
enough to affect
delicate equipment.

If the motor has
an external Memory
Module, remove it.

The Setup dialog
box

32

Select the number of motors in the daisy chain from the Max Motors edit box
and the communication port that is connected to the motors and leave all other
check box entries in the window unchecked. Click on “OK” to set these values
for tuning.

Initializing a Daisy chain of motors

If the motor(s) have an external Memory Module, remove it and make sure all
connections are OK.

 Click on the Initialize button

 OR select Initialize Daisy Chain from the Motor drop-down menu

A small box shows that the program is initial-
izing the motors in the daisy chain. After a
few seconds the box will disappear and the
number and version of the motor(s) should
be visible in the Address motor: window.
Select the motor from this combo box.

Getting the tuning values from a motor

 Click on the Get Tuning
 button

 OR select the Get
 Tuning Values from the
 Motor drop-down menu

This command asks the tuning
values that are currently set in
the motor. After a few seconds
a message box appears show-
ing the successful reading of
values.

Setting the tuning values

Make sure that the values read from the motor are the motor’s default values
or are the correct values intended to be used in an application. The preceding
figure displays the defaults for a version 4.02 motor. Modify the tuning values
if necessary.

After verifying the values:

 Click on the Set Tuning button

 OR select the Set Tuning Values from the Motor drop-down menu

After a few seconds a message box shows the successful setting of motor
values.

Selecting the motor
after initializing.

Main window
showing values
read from motors.

SMARTMOTOR TUNING UTILITY

33

Running the Tuner

Now everything is ready to run the tuner.

 Click on the Run tuner button

 OR select the Run tuner from the Motor drop-down menu

A small box shows the program
is processing the command and
after a few seconds, the motor
shaft will rotate rapidly and stop.
After that, a record is added
in the Chart History window,
showing the date and time of
operation and the results of
the operation are shown in the
chart on the right side of main
window.

Modifying the tuning values

Try other tuning values and setup
parameters and compare the
results.

Note: The Set Tuning button
must be clicked each time the
tuner is run. The figure, right,
shows the result of running the
tuner with a lowered KP and
KD.

The date and time in the Chart
History window is a default label
that can be renamed by:

 Clicking on a selected label

 OR selecting Edit from the History pull-down menu and editing the
 label.

SMARTMOTOR TUNING UTILITY

Running tuner with
modified tuning
values.

See the PID Filter
section for a greater
understanding on
optimizing the
SmartMotor's
tuning.

The resulting chart
after running the
tuner.

34

SMARTMOTOR TUNING UTILITY WINDOWS

There are five main elements of the SmartMotor Tuning Utility window.

1. Address motor: This window is
updated after initialization of a
single motor or a daisy chain of
motors. There will be a line for
each motor that can be accessed
by clicking on the small down
arrow at the end of the window.
The data for each motor will show
the sequence number, sample rate
and version number. Highlight
the motor needed and the tuner’s
commands will be sent to it.

2. Tuning Values: The Tuning values are 8 windows with data that defines
the characteristics of a motor in response to different input data.

(Proportional coefficient) KP: This is the gain of the proportional element
in the PID filter. The higher the value of KP, the stiffer the motor will be.

(Integral coefficient) KI: The integral compensation gain of the PID filter.
The integral term of the PID filter creates a torque that is a function of both
error and time. If the position error remains nonzero, over time, the torque
becomes ever larger to enable the motor’s shaft to reach its target.

(Differential coefficient) KD: The derivative element of the PID filter. It can
be thought of as the vibration-absorbing element.

(Integral limit) KL: The integral limit of the PID filter. This value
provides a limit to the amount of torque the KI term can produce given a
non closing position error.

(Differential sample rate) KS: This value represents the number of sample
periods between evaluation of the KD parameter.

(Velocity feed forward) KV: This value compensates for the predictable
natural latency of the filter as it's influence grows with speed.

(Acceleration feed forward) KA: This value compensates for the predict-
able forces due purely to acceleration and deceleration.

(Gravitational coefficient) KG: This value compensates for the predictable
force due to gravity in a vertical application.

3. Chart History: This window shows all of the tuning operations performed
on the motor. Move through the list of motors (in step one) and see
each tuning chart. Any item selected from this list can also be edited or
deleted.

4. Shortcut buttons: Each one of these buttons has a corresponding sub-
item in the “Motor” pull-down menu. The menu items operations are
described in the following section.

SmartMotor
Tuning Utility data
can be saved with
the file extension
.tnh. Reopen the
files in the
SmartMotor
Tuning Utility to
view previously
saved results.

Peak Velocity,
Peak Acceleration,
Position Offset,
Number Of
Samples, the Auto-
scale option and
the PID tuning
values are all
saved.

SMARTMOTOR TUNING UTILITY

The five elements
of the "SmartMotor
Tuning Utility".

Note: The PID
filter parameters
are held in registers
until an F command
is received. Then
they become active
within the same
servo cycle.

35

5. Tuning Chart: This graph displays the "SmartMotor Tuning Utility" data for
the selected SmartMotor. The horizontal axis is time in milliseconds and
the vertical axis is position in counts.

SMARTMOTOR TUNING UTILITY MENUS

This section describes all of the operations performed by the SmartMotor
Tuning Utility.

File, pull-down menu

The file pull-down menu (right) has 5
sub-items that are described here.

New: Opens a new document.
The document can be saved with
a new file name.

Open: Opens an existing
SmartMotor file. Select any file
with .tnh extension saved in the
SmartMotor Tuning Utility. All tuning values and tuning parameters are
updated with the values stored in the file.

Save: Updates the data in the original saved file. If the data has not
been saved (a new file), the Save As window (below) will open.

Save As: Opens the Save As
window. Enter a new file name
and save the SmartMotor Tuning
Utility data to a new file.

Exit: Closes the SmartMotor
Tuning Utility. If the file was mod-
ified since the last time it was
saved, Exit will ask if the file should
be saved.

Edit pull-down menu

Copy: Will copy the data highlighted to the Windows clipboard. The data
can then be pasted into another application such as a spreadsheet. It is
also possible to paste a picture of the graph by using the Paste Special
menu item in the destination application and selecting the Picture or Bit
map format. The Picture format is scalable, while the Bit map format is
not.

The data in the first column of numbers copied to the clipboard are the
number of milliseconds since the start of the step motion. The second
column contains the actual position values of the shaft at the correspond-
ing times.

SMARTMOTOR TUNING UTILITY

The File menu
sub-items

The Save As dialog
box.

Use the
SmartMotor version
number (or other
identification) in the
filename as a
reminder about
which motor was
used.

36

History pull-down menu

The commands in this menu are related to the
history of charts that are stored in the pro-
gram.

Previous

This command selects the chart that is
immediately before the current chart in
the “Chart History” list box and shows it
on the right side of main window.

Next

This command selects the chart that is immediately after the current chart
in the “Chart History” list box and shows it on the right side of the main
window.

Last

This command selects the last chart in the “Chart History” list box and
shows it on the right side of the main window.

Delete

This command deletes the currently selected chart in the chart history list
box.

Delete All

This command deletes all of the charts in the chart history.

Edit

This command allows the user to edit the Chart History label. This can
also be accomplished by clicking on a selected item in the list. By default,
the chart label indicates the date and time the chart was created. Click
on a selected chart history label and edit the label to indicate any specific
notes or comments about that chart. Click on Enter to complete editing or
Escape to cancel editing.

Motor drop-down menu

This menu (right) contains sub-
items that perform the main actions
of the SmartMotor Tuning Utility.

Tuner Setup...

This command invokes the Setup
dialog box (top of facing page).

The parameters in this dialog box
determine the data fed to motors for
tuning. These values are as follows:

SmartMotor
Tuning Utility/
Motor drop-down
menu

SMARTMOTOR TUNING UTILITY

History menu
sub-items.

37

SMARTMOTOR TUNING UTILITY

Setup dialog box.

Peak Velocity: is the target
trajectory velocity that will be
used in the step motion. The
default value is 10 million.

Peak Acceleration: is the
desired acceleration at which
to rotate the shaft during the

step motion. The default is 10 million. Due to limited resolution, odd num-
bers are rounded down to the next even integer.

Position Offset: specifies the target trajectory position. Note that nothing
will happen if this value is too small. The default value is 500.

Number of Samples: is the
number of times to repeat a
loop that reads the position
values. The amount of time
spent in polling the position
will vary with the speed of the
computer. Currently, the min-
imum period between readings is about 3.3 milliseconds, sufficient for
accurate rendering of the shaft position. The maximum limit is 1,000 sam-
ples, where the position polling will last more than 3 seconds at that value.

Max Motors: specifies the maximum number of motors to try and address
before giving up. The larger the value, the longer the delay before the
Tuner detects that the chain is not communicating or that there are no
motors attached. It is not advisable to run the tuner in a daisy chain,
because each motor adds a small amount of propagation delay (about
1-2ms). It also takes time to initialize a long chain.

Serial Port: where the motors are connected (COM1 or COM2).

Automatically initialize daisy chain on startup: This setting is only for
convenience and generally should not be checked. It will cause the Tuning
Utility to try to initialize a chain before loading its main window, which will
introduce a small delay at startup. Use this option only if a motor will be

connected before executing the Tuner appli-
cation.

Automatically get tuning values: If this box
is checked, the Tuner will retrieve the tuning
values of the default motor immediately after

initializing a daisy chain as well as every time a different Default Motor is
selected in the pull-down box.

Automatically set tuning values: Enabling this setting will cause the
tuning values entered in the dialog box to
be sent to the Default Motor before run-
ning the tuner. Otherwise, if any value
is modified before running the tuner and
without setting those values in the motor,
there will be prompt to update the tuning

Sequence number,
sample rate and
version number
identifiers in the
combo box.

Window confirming
tuning values have
been successfully
retrieved.

Window confirming
tuning values have
been successfully
set.

38

values in the motor with the
newly edited values.

Auto-scale Y axis: The default
scaling of the Y (position) axis
is so that the target trajectory
position offset is in the center
of the axis. If there are any values that fall outside this preset range, turn
this option on and the chart will auto-scale to fit the entire lower and upper
bounds of the chart.

Initialize Daisy Chain: In order to use the Tuning Utility with more than one
SmartMotor in a daisy chain, the daisy chain must first be initialized by select-
ing this menu item or pressing the “Initialize” button. With one motor, there’s
no need to initialize a daisy chain. The Address Motor combo box clears for a
moment and then becomes filled with the sequence number, sample rate and
version number of each motor in the daisy chain as shown.

Get Tuning Values: To examine the PID values stored in the motor, select this
menu item or click on the Get Tuning button. This will display the tuning values
stored in the currently addressed motor. A dialog box pops up to confirm that
the tuning values have been successfully retrieved.

Set Tuning Values: Set the tuning values of the currently addressed motor by
typing in new values for the PID terms and selecting this menu item or pressing
the Set Tuning button. A confirmation message box pops up to indicate that the
tuning values have been successfully set and the F command has been issued
to load the values into active registers.

Run Tuner: Select this
menu item or click on the
Run Tuner button to run the
motor and see the results.
Depending on the tuning
parameters, with no load
attached to the motor, it may
simply vibrate a little before
settling down. A chart will
plot, originating from the
bottom left corner if the
window and then oscillating
up and down as shown
here.

SMARTMOTOR TUNING UTILITY

The resulting chart
of running the tuner.

Window confirming
motor update.

39

Help Menu:

The help menu has two sub-items.

Contents: This brings a dialog box
showing the contents for the Smart
Motor Tuning Utility help. All features of
this program are described in this help
system.

About…: This window gives information about the version and copyright.

Help menu.

The contents of
SmartMotor Tuning
Utility help.

SMARTMOTOR TUNING UTILITY

40

41

CREATING MOTION 45

 A=exp Set absolute acceleration 45

 V-exp Set maximum permitted velocity 46

 P=exp Set absolute position for move 46

 D=exp Set relative distance for position move 46

 G Go, start motion 47

 S Abruptly stop motion in progress 47

 X Decelerate to stop 47

 O=exp Set/reset origin to any position 47

 OFF Turn motor servo off 47

 MP Position mode 47

 MV Velocity mode 48

 MT Torque mode 48

 T=exp Set torque value 48

 MD Contouring mode 49

 BRK... Brake Commands 51

PROGRAM FLOW 53

 RUN Execute stored user program 53

 RUN? Halt program if no RUN issued 53

 GOTO# Redirect program flow 53

 C# Subroutine label 53

 END End program execution 54

 GOSUB# Execute a subroutine 54

 RETURN Return from subroutine 54

 WHILE, LOOP Conditional loop 55

 IF, ENDIF Conditional test 56

 ELSE, ELSEIF Conditional alternate test 56

 SWITCH, CASE, DEFAULT, BREAK, ENDS 57

 TWAIT Wait during trajectory 57

PROGRAMMING TABLE OF CONTENTS

 WAIT=exp Wait (exp) sample periods 57

 STACK Reset the GOSUB return stack 58

VARIABLES 59

 Arrays 59

 Storage of Variables 60

 EPTR=exp Set EEPROM pointer 61

 VST(var,index) Store variables 61

 VLD(var,index) Load variables 61

 Fixed or Pre-assigned variables 61

 Report to Host Commands 61

ENCODER AND PULSE TRAIN FOLLOWING 65

 MF1, MF2, MF4 Mode Follow 65

 MF0, MS0 65

 MFDIV=exp Set Ratio divisor 65

 MFMUL=exp Set Ratio multiplier 65

 MFR Calculate Mode Follow Ratio 66

 MSR Calculate Mode Step Ratio 66

 MC Mode Cam 66

 BASE=exp Base Length 66

 SIZE=exp Number of Cam Data Entries 66

 MD50 Drive Mode 67

SYSTEM STATE FLAGS 69

 Reset System State Flags 70

INPUTS AND OUTPUTS 71

 The Main RS-232 port 71

 The G port 71

 Counter Functions of ports A and B 72

 General I/O functions of ports A and B 72

PROGRAMMING TABLE OF CONTENTS

42

 The AnaLink port (using I2C protocol) 73

 The AnaLink port (using RS-485 protocol) 73

 The AnaLink port as general I/O 73

 AnaLink I/O modules 76

 Input and Output assignments 76

 I/O Schematics 77

 Motor Connectors Pin Identifications 78

 SmartMotor Connector Locations 79

COMMUNICATIONS 81

 Daisy Chaining RS-232 82

 SADDR# Set motor to new address 82

 SLEEP, SLEEP1 Assert sleep mode 82

 WAKE, WAKE1 De-assert SLEEP 82

 ECHO, ECHO1 Echo input 83

 ECHO_OFF, ECHO_OFF1 De-assert ECHO 83

 OCHN 84

 CCHN(type,channel) Close a COM channel 84

 BAUD# Set Baud rate of main port 84

 PRINT(), PRINT1() 84

 SILENT, SILENT1 Assert silent mode 85

 TALK, TALK1 De-assert silent mode 85

 ! Wait for RS-232 char. to be received 85

 a=CHN0, a=CHN1 RS-485 COM error flags 85

 a=ADDR Motor’s self address 86

 Getting data from a COM port 86

THE PID FILTER 89

 PID Filter Control 89

 Tuning the Filter 90

CURRENT LIMIT CONTROL 92

PROGRAMMING TABLE OF CONTENTS

43

44

45

Enter the four commands below in the SmartMotor Terminal window,
following each command with a return, and the SmartMotor will start
to move:

 Commands Comments

 A=100 ‘Set Maximum Acceleration
 V=1000000 ‘Set Maximum Velocity
 P=1000000 ‘Set Absolute Position

 G ‘Start move (Go)

On power-up the motor defaults to position mode. Once Acceleration
(A) and Velocity (V) are set, simply issue new Position (P) commands,
followed by a G (Go) command to execute moves to new absolute loca-
tions. The motor does not instantly go to the programmed position, but
follows a trajectory to get there. The trajectory is bound by the maximum
Velocity and Acceleration parameters. The result is a trapezoidal velocity
profile, or a triangular profile if the maximum velocity is never met.

Position, Velocity and Acceleration can be changed at any time during
or between moves. The new parameters will only apply when a new
G command is sent.

All SmartMotor commands are grouped by function, with the following
notations:

 # Integer number

 exp Expression or signed integer

 var Variable

 COM Communication channel

A=exp Set absolute acceleration

Acceleration must be a positive integer within the range of 0 to
2,147,483,648. The default is zero forcing something to be entered
to get motion. A typical value is 100. If left unchanged, while the
motor is moving, this value will not only determine acceleration but also
deceleration which will form a triangular or trapezoidal velocity motion
profile. This value can be changed at any time. The value set does not
get acted upon until the next G command is sent.

If the motor has a 2000 count encoder (sizes 17 and 23), multiply the
desired acceleration, in rev/sec2, by 7.91 to arrive at the number to set
A to. With a 4000 count encoder (sizes 34, 42 and 56) the multiplier is
15.82. These constants are a function of the motors PID rate. If the
PID rate is lowered, these constants must raised proportionally.

CREATING MOTION

A complete move
requires the user
to set a Position,
a Velocity and an
Acceleration,
followed by a Go.

For SM17 & SM23
A=rev/sec2 * 7.91

For SM34, 42 & 56
A=rev/sec2 * 15.82

V=exp Set maximum permitted velocity

Use the V command to set a limit on the velocity the motor can accelerate
to. That limit becomes the slew rate for all trajectory based motion whether in
position mode or velocity mode. The value defaults to zero so it must be set
before any motion can take place. The new value does not take effect until
the next G command is issued. If the motor has a 2000 count encoder (sizes
17 and 23), multiply the desired velocity in rev/sec by 32212 to arrive at the
number to set V to. With a 4000 count encoder (sizes 34, 42 & 56) the
multiplier is 64424. These constants are a function of the motors PID rate. If
the PID rate is lowered, these constants will need to be raised.

P=exp Set absolute position for move

The P= command sets an absolute end position. The units are encoder counts
and can be positive or negative. The end position can be set or changed at
any time during or at the end of previous moves. SmartMotor sizes 17 and 23
resolve 2000 increments per revolution while SmartMotor sizes 34, 42 and 56
resolve 4000 increments per revolution.

The following program illustrates how variables can be used to set motion
values to real-world units and have the working values scaled for motor units
for a size 17 or 23 SmartMotor.

 a=100 ‘Acceleration in rev/sec*sec
 v=1 ‘Velocity in rev/sec
 p=100 ‘Position in revs
 GOSUB10 ‘Initiate motion
 END ‘End program
 C10 ‘Motion routine
 A=a*8 ‘Set Acceleration
 V=v*32212 ‘Set Velocity
 P=p*2000 ‘Set Position
 G ‘Start move

 RETURN ‘Return to call

D=exp Set relative distance for position move

The D= command allows a relative distance to be specified, instead of an
absolute position. The number following is encoder counts and can be
positive or negative.

The relative distance will be added to the current position, either during or
after a move. It is added to the desired position rather than the actual position
so as to avoid the accumulation of small errors due to the fact that any servo
motor is seldom exactly where it should be at any instant in time.

CREATING MOTION

46

For SM17 & SM23
V=rev/sec * 32212

For SM34, 42 & 56
V=rev/sec * 64424

For SM17 & SM23
P=rev * 2000

For SM34, 42 & 56
P=rev * 4000

G also resets
several system
state flags

G Go, start motion

The G command does more than just start motion. It can be used dynamically
during motion to create elaborate profiles. Since the SmartMotor allows
position, velocity and acceleration to change during motion, “on-the-fly”, the G
command can be used to trigger the next profile at any time.

S Abruptly stop motion in progress

If the S command is issued while a move is in progress it will cause an
immediate and abrupt stop with all the force the motor has to offer. After the
stop, assuming there is no position error, the motor will still be servoing. The
S command works in both Position and Velocity modes.

X Decelerate to stop

If the X command is issued while a move is in progress it will cause the motor
to decelerate to a stop at the last entered A= value. When the motor comes
to rest it will servo in place until commanded to move again. The X command
works in both Position and Velocity modes.

O=exp Set/Reset origin to any position

The O= command (using the letter O, not the number zero) allows the host
or program not just to declare the current position zero, but to declare it to
be any position, positive or negative. The exact position to be re-declared is
the ideal position, not the actual position which may be changing slightly due
to hunting or shaft loading. The O= command directly changes the motor's
position register and can be used as a tool to avoid +/- 31 bit roll over position
mode problems. If the SmartMotor runs in one direction for a very long time
it will reach position +/-2,147,483,648 which will cause the position counter
to change sign. While that is not an issue with Velocity Mode, it can create
problems in position mode.

OFF Turn motor servo off

The OFF command will stop the motor from servoing, much as a position
error or limit fault would. When the servo is turned off, one of the status
LEDs will revert from Green to Red.

MP Position Mode

Position mode is the default mode of operation for the SmartMotor. If the
mode were to be changed, the MP command would put it back into position
mode. In position mode, the P# and D# commands will govern motion.

CREATING MOTION

47

BINARY POSITION DATA TRANSFER

The ASCII based command string format, while convenient, is not the fastest
way to communicate data. It can be burdensome when trajectory commands
are sent to the motor. For that reason a special binary format has been
established for the communication of trajectory critical data such as Position,
Velocity and Acceleration. Using the binary format, these 32 bit parameters
are sent as four bytes following a code byte that flags the data for a particular
purpose. The code bytes are 252 for acceleration, 253 for velocity and 254
for position. As an example, the following byte values communicate A=53,
V=-1 & P=2137483648.

 A=53 252 000 000 000 053 032

 V=-1 253 255 255 255 254 032

 P=2137483648 254 127 255 255 255 032

For further expediency, the commands can be appended with the G command
to start motion immediately. Two examples are as follows (the ASCII value
for G is 71):

 P=0 G 254 000 000 000 000 071 032

 V=512 G 253 000 000 002 000 071 032

MV Velocity Mode

Velocity mode will allow continuous rotation of the motor shaft. In Velocity
mode, the programmed position using the P or the D commands is ignored.
Acceleration and velocity need to be specified using the A= and the V=
commands. After a G command is issued, the motor will accelerate up to
the programmed velocity and continue at that velocity indefinitely. In velocity
mode as in Position mode, Velocity and Acceleration are changeable on-the-
fly, at any time. Simply specify new values and enter another G command
to trigger the change. In Velocity mode the velocity can be entered as a
negative number, unlike in Position mode where the location of the target
position determines velocity direction or sign. If the 32 bit register that holds
position rolls over in velocity mode it will have no effect on the motion.

MT Torque Mode

In torque mode the motor shaft will simply apply a torque independent of
position. The internal encoder tracking will still take place, and can be read
by a host or program, but the value will be ignored for motion because the
PID loop is inactive. To specify the amount of torque, use the T= command,
followed by a number between -1023 and 1023.

T=exp Set torque value, -1023 to 1023

In torque mode, activated by the MT command, the drive duty cycle can be

CREATING MOTION

48

set with the T= command. The following number or variable must fall in the
range between -1023 and 1023. The full scale value relates to full scale or
maximum duty cycle. At a given speed there will be reasonable correlation
between drive duty cycle and torque. With nothing loading the shaft, the T=
command will dictate open-loop speed.

MD Contouring Mode (requires host)

SmartMotors with version 4.15 or greater firmware have the added ability to
do multiple axis contouring. This firmware version became standard roughly
mid-year 2001. The Contouring Mode is the foundation of the Animatics'
G-Code interface that enables a P.C. and multiple SmartMotors to interpret
G-Code files and do linear, circular and helical interpolation as well as
unlimited multi-axis contouring.

The basic principle of operation takes advantage of the fact that each
SmartMotor has a very accurate time base. Absolute position-time pairs of
data get sent to the SmartMotor to fill buffers that facilitate continuous motion.
The SmartMotor will adjust its own Velocity and Acceleration to be certain to
arrive at the specified position at the exact specified time without slowing to
a stop. As new position-time pairs arrive, the motor transitions smoothly from
one profile to the next producing smooth, continuous motion. In a multiple
axis configuration, different positions can be sent to different motors, with
the same time intervals resulting in smooth, continuous multiple axis motion.
The key is for the host to regulate the volume of data in each of the
different motor's buffers. The position-time pairs of data are preceded with an
identification byte and then four bytes for position and four for time. Time is
in units of servo samples and is limited to 23 bits. Time is further constrained
to be even powers of 2 (i.e. 1, 2, 4, 8, ..., 32768).

The coordinating host can send the Q command to solicit status information
on the coordination process. Upon receiving the Q command, the SmartMotor
will return status, clock and space available in the dedicated circular buffer.
The response to Q takes two forms, one while the mode is running with
trajectory in progress and no errors having occurred and another when the
mode is not running. Both responses conform to the overall byte format of:

 Q Response: 249 byte1 byte2 byte3 byte4

If the mode is running:

 byte1 bit 7 is set
 byte1 bits 6 through 0 return data slots available
 bytes 2, 3 & 4 return the 24 bit clock of the SmartMotor

If the mode is not running:

 byte1 bit 7 is clear
 byte1 bits 6 through 0 return status
 byte2 returns space available
 bytes 3 & 4 return the 12 lower bits of the 24 bit clock of the SmartMotor

CREATING MOTION

49

Contouring Mode is
the foundation of
Animatics' G-Code
interface that
enables a P.C. and
multiple
SmartMotors to
interpret G-Code
files and do multiple
axis contouring.

50

As absolute position and time data is sent to the SmartMotor, differences are
calculated that we call "deltas". A delta is the difference between the latest
value and the one just prior. Time deltas are limited to 16 bits while Position
deltas are limited to 23 bits in size.

The Status Byte is constructed as follows:

 bit0=1 MD mode pending a G
 bit1=1 MD mode actually running
 bit2=1 Invalid time delta > 16 bit received
 bit3=1 Invalid position delta > 23 bits received
 bit4=1 Internal program data space error
 bit5=1 Host sent too much data (data buffer overflow)
 bit6=1 Host sent too little data (data buffer underflow)

A trajectory terminates if an unacceptable position error occurs, if invalid data
is received, if there is a data overflow or if there is a data underflow.

The host should send data pairs only when at least 3 empty data slots are
available. MD responds to limit switches with an aborted trajectory. The MD
mode uses KV feed forward for improved performance.

The byte flag that precedes and marks a position is of decimal value 250. The
byte flag that precedes and marks a time is of decimal value 251.

The following is an example of the decimal byte values for a series of constant
speed motion segments. Firmware versions 4.16 and higher do not need
time values after the first two if the time delta is not changing. The byte
transfers terminate with a carriage return (13).

 Position 250 000 000 000 000 013 Position = 0

 Time 251 000 000 000 000 013 Time = 0

 Position 250 000 000 016 000 013

 Time 251 000 000 001 000 013 Time delta = 256

 Position 250 000 000 032 000 013

 Position 250 000 000 048 000 013

 Position 250 000 000 052 000 013 Reduce position delta

 Time 251 000 000 003 064 013 Reduce time delta

 Position 250 000 000 056 000 013

 Position 250 000 000 060 000 013

 Position 250 000 000 064 000 013

What is not shown in the these codes are the addressing bytes that would
be used to differentiate multiple motors on a network. As described ahead
in this manual (see the SADDR command), a network of SmartMotors can

CREATING MOTION

51

be sorted out by sending a single address byte. When communicating to a
particular motor, the address byte need only be sent once, until all of the
communications to that particular motor are complete and another motor
needs to be addressed. The byte patterns in the previous example would
need to be preceded with an address byte (to a properly addressed motor) for
multiple axis contouring. In the addressing scheme, there is a global address
provision for sending data to all motors at once. By zeroing out the clocks
before starting the contouring, the motors will by synchronized and single time
values can then be sent to all motors at once, increasing overall bandwidth.
Also, as mentioned earlier, SmartMotors with version 4.16 or higher do not
need time data past the first two, if there is no change in the time delta.

The basis for contouring using this format is to keep the rate at which data
is sent to each motor constant (and as fast as possible). That means that
in order to accelerate axes, absolute positions need to be sent that invoke
progressively larger position deltas, and to keep constant velocity, absolute
positions need to be sent that are equidistant.

With all of the communications to send data and receive status, it would be
outstanding to have a bandwidth on a two axis system of 64 samples, or
16ms. Typically, with a three or four axis system a bandwidth of 128 servo
samples or 32ms is achievable. This would be at a baud rate of 38.4k.
Keep in mind that during this time the SmartMotor is micro interpolating. The
motion will be very smooth and continuous.

In contouring mode, all of the binary contouring data goes into the motor's
buffers. While this is true, regular commands will still be recognized and they
will operate normally. This will take some time, however, and it is up to the
programmer to assure that the buffers never underflow due to neglect.

BRAKE COMMANDS
(where optional brake exists)

BRKRLS Brake release

BRKENG Brake engage

BRKSRV Release brake when servo active, engage break when inactive.

BRKTRJ Release brake when running a trajectory, engage under all other
conditions. Turns servo off when the brake is engaged.

Many SmartMotors™ are available with power safe brakes. These brakes will
apply a force to keep the shaft from rotating should the SmartMotor lose
power. Issuing the BRKRLS command will release the brake and BRKENG
will engage it. There are two other commands that initiate automated
operating modes for the brake. The command BRKSRV engages the brake
automatically, should the motor stop servoing and holding position for any
reason. This might be due to loss of power or just a position error, limit
fault, over-temperature fault.

CREATING MOTION

52

Finally, the BRKTRJ command will engage the brake in response to all of
the previously mentioned events, plus any time the motor is not performing a
trajectory. In this mode the motor will be off, and the brake will be holding
it in position, perfectly still, rather than the motor servoing when it is at
rest. As soon as another trajectory is started, the brake will release. The
time it takes for the brake to engage and release is on the order of only
a few milliseconds.

The brakes used in SmartMotors™ are zero-backlash devices with extremely
long life spans. It is well within their capabilities to operate interactively within
an application. Care should be taken not to create a situation where the brake
will be set repeatedly during motion. That will reduce the brake’s life.

CREATING MOTION

53

Program commands are like chores, whether it is to turn on an output,
set a velocity or start a move. A program is a list of these chores. When
a programmed SmartMotor is powered-up or its program is reset with
the Z command, it will execute its program from top to bottom, with or
without a host P.C. Connected. This section covers the commands that
control the program itself.

RUN Execute stored user program

If the SmartMotor is reset with a Z command, all previous variables and
mode changes will be erased for a fresh start and the program will begin
to execute from the top. Alternatively the RUN command can be used
to start the program, in which case the state of the motor is unchanged
and its program will be invoked.

RUN? Halt program if no RUN issued

To keep a downloaded program from executing at power-up start the
program with the RUN? Command. It will prevent the program from
starting when power is applied, but it will not prevent the program from
running when the SmartMotor sees a RUN command from a host over
the RS-232 port.

Once the program is running, there are a variety of commands that can
redirect program flow and most of those can do so based on certain
conditions. How these conditional decisions are setup determines what
the programmed SmartMotor will do, and exactly how “smart” it will
actually be.

GOTO# Redirect program flow

C# Subroutine label, C0-C999

The most basic commands for redirecting program flow, without inherent
conditions, are GOTO# in conjunction with C#. Labels are the letter
C followed by a number (#) between 0 and 999 and are inserted in
the program as place markers. If a label, C1 for example, is placed
in a program and that same number is placed at the end of a GOTO
command, GOTO1, the program flow will be redirected to label C1 and
the program will proceed from there.

As many as a thousand labels can be used in a program (0 - 999), but,
the more GOTO commands used, the harder the code will be to debug or
read. Try using only one and use it to create the infinite loop necessary
to keep the program running indefinitely, as some embedded programs
do. Put a C1 label near the beginning of the program, but after the
initialization code and a GOTO1 at the end and every time the GOTO1 is
reached the program will loop back to label C1 and start over from that
point until the GOTO1 is reached, again, which will start the process at

PROGRAM FLOW

C1 again, and so on. This will make the program run continuously without
ending. Any program can be written with only one GOTO. It might be a little
harder, but it will tend to force better program organization, which in turn, will
make it easier to be read and changed.

END End program execution

If it's necessary to stop a program, use an END command and execution
will stop at that point. An END command can also be sent by the host to
intervene and stop a program running within the motor. The SmartMotor
program is never erased until a new program is downloaded. To erase the
program in a SmartMotor, download only the END command as if it were a
new program and that’s the only command that will be left on the SmartMotor
until a new program is downloaded. To compile properly, every program needs
and END somewhere, even if it is never reached. If the program needs to run
continuously, the END statement has to be outside the main loop.

GOSUB# Execute a subroutine

RETURN Return from subroutine

Just like the GOTO# command, the GOSUB# command, in conjunction with
a C# label, will redirect program execution to the location of the label. But,
unlike the GOTO# command, the C# label needs a RETURN command to
return the program execution to the location of the GOSUB# command that
initiated the redirection. There may be many sections of a program that need
to perform the same basic group of commands. By encapsulating these
commands between a C# label and a RETURN, they may be called any
time from anywhere with a GOSUB#, rather than being repeated in their
totality over and over again. There can be as many as one thousand different
subroutines (0 - 999) and they can be accessed as many times as the
application requires.

By pulling sections of code out of a main loop and encapsulating them into
subroutines, the main code can also be easier to read. Organizing code into
multiple subroutines is a good practice.

The commands that can conditionally direct program flow to different areas
use a constant [#] like 1 or 25, a variable like a or al[#] or a function involving
constants and/or variables a+b or a/[#]. Only one operator can be used in a
function. The following is a list of the operators:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 == Equals (use two =)

PROGRAM FLOW

54

Calling
subroutines from
the host can
crash the stack

 != Not equal

 < Less than

 > Greater than

 <= Less than or equal

 >= Greater than or equal

 & Bit wise AND (see appendix A)

 | Bit wise OR (see appendix A)

WHILE, LOOP

The most basic looping function is a WHILE command. The WHILE is
followed by an expression that determines whether the code between the
WHILE and the following LOOP command will execute or be passed over.
While the expression is true, the code will execute. An expression is true
when it is non-zero. If the expression results in a “zero” then it is false. The
following are valid WHILE structures:

 WHILE 1 ‘1 is always true
 UA=1 ‘Set output to 1
 UA=0 ‘Set output to 0
 LOOP ‘Will loop forever

 a=1 ‘Initialize variable ‘a’
 WHILE a ‘Starts out true
 a=0 ‘Set ‘a’ to 0
 LOOP ‘This never loops back

 a=0 ‘Initialize variable ‘a’
 WHILE a<10 ‘a starts less
 a=a+1 ‘a grows by 1

 LOOP ‘Will loop back 10x

The task or tasks within the WHILE loop will execute as long as the function
remains true.

The BREAK command can be used to break out of a WHILE loop, although
that somewhat compromises the elegance of a WHILE statement’s single test
point, making the code a little harder to follow. The BREAK command should
be used sparingly or preferably not at all in the context of a WHILE.

If it's necessary for a portion of code to execute only once based on a certain
condition then use the IF command.

PROGRAM FLOW

55

IF, ENDIF

Once the execution of the code reaches the IF command, the code between
that IF and the following ENDIF will execute only when the condition directly
following the IF command is true. For example:

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 IF a==1 ‘Use double = test
 b=1 ‘Set ‘b’ to one
 ENDIF ‘End IF

Variable b will only get set to one if variable a is equal to one. If a is not
equal to one, then the program will continue to execute using the command
following the ENDIF command.

Notice also that the SmartMotor language uses a single equal sign (=) to
make an assignment, such as where variable a is set to equal the logical
state of input A. Alternatively, a double equal (==) is used as a test, to
query whether a is equal to 1 without making any change to a. These are
two different functions. Having two different syntaxes has farther reaching
benefits.

ELSE, ELSEIF

The ELSE and ELSEIF commands can be used to add flexibility to the IF
statement. If it were necessary to execute different code for each possible
state of variable a, the program could be written as follows:

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 IF a==0 ‘Use double ‘=’ test
 b=1 ‘Set ‘b’ to one
 ELSEIF a==1
 c=1 ‘Set ‘c’ to one
 ELSEIF a==2
 c=2 ‘Set ‘c’ to two
 ELSE ‘If not 0 or 1
 d=1 ‘Set ‘d’ to one

 ENDIF ‘End IF

There can be many ELSEIF statements, but at most one ELSE. If the
ELSE is used, it needs to be the last statement in the structure before the
ENDIF. There can also be IF structures inside IF structures. That's called
“nesting” and there is no practical limit to the number of structures that can
nest within one another.

PROGRAM FLOW

56

SWITCH, CASE, DEFAULT, BREAK, ENDS

Long, drawn out IF structures can be cumbersome, however, and burden the
program visually. In these instances it can be better to use the SWITCH
structure. The following code would accomplish the same thing as the
previous program:

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 SWITCH a ‘Begin SWITCH
 CASE 0
 b=1 ‘Set ‘b’ to one
 BREAK
 CASE 1
 c=1 ‘Set ‘c’ to one
 BREAK
 CASE 2
 c=2 ‘Set ‘c’ to two
 BREAK
 DEFAULT ‘If not 0 or 1
 d=1 ‘Set ‘d’ to one
 BREAK
 ENDS ‘End SWITCH

Just as a rotary switch directs electricity, the SWITCH structure directs the
flow of the program. The BREAK statement then jumps the code execution to
the code following the associated ENDS command. The DEFAULT command
covers every condition other than those listed. It is optional.

TWAIT Wait during trajectory

The TWAIT command pauses program execution while the motor is moving.
Either the controlled end of a trajectory, or the abrupt end of a trajectory
due to an error, will terminate the TWAIT waiting period. If there were a
succession of move commands without this command, or similar waiting
code between them, the commands would overtake each other because
the program advances, even while moves are taking place. The following
program has the same effect as the TWAIT command, but has the added
virtue of allowing other things to be programmed during the wait, instead of
just waiting. Such things would be inserted between the two commands.

 WHILE Bt ‘While trajectory

 LOOP ‘Loop back

PROGRAM FLOW

57

The SWITCH
statement makes
use of the same
memory space as
variable "zzz". Do
not use this variable
or array space
when using
SWITCH

58

WAIT=exp Wait (exp) sample periods

There will probably be circumstances where the program execution needs
to be paused for a specific period of time. Time, within the SmartMotor, is
tracked in terms of servo sample periods. Unless otherwise programmed
with the PID# command, the sample rate is about 4KHz. WAIT=4000 would
wait about one second. WAIT=1000 would wait for about one quarter of
a second. The following code would be the same as WAIT=1000, only
it will allow code to execute during the wait if it is placed between the
WHILE and the LOOP.

 CLK=0 ‘Reset CLK to 0
 WHILE CLK<1000 ‘CLK will grow
 IF UAI==0 ‘Monitor input A
 GOSUB911 ‘If input low
 ENDIF ‘End the IF
 LOOP ‘Loop back

The above code example will check if port A ever goes low, while it is waiting
for the CLK variable to count up to 1000.

STACK Reset the GOSUB return stack

The STACK is where information is held with regard to the nesting of
subroutines (nesting is when one or more subroutines exist within others). In
the event program flow is directed out of one or more nested subroutines,
without executing the included RETURN commands, the stack will be cor-
rupted. The STACK command resets the stack with zero recorded nesting.
Use it with care and try to build the program without requiring the STACK
command.

One possible use of the STACK command might be if the program used
one or more nested subroutines and an emergency occurred, the program
or operator could issue the STACK command and then a GOTO command
which would send the program back to a label at the beginning. Using this
method instead of a RESET command would retain the states of the variables
and allow further specific action to resolve the emergency.

PROGRAM FLOW

For the exact
sample period,
use the RSP
command

59

Variables are data holders that can be set and changed within the
program or over the communication channel.

The first 26 variables are long integers (32 bits) and are accessed with
the lower case letters of the alphabet, a, b, c, . . . x, y, z.

 a=# Set variable a to a numerical value

 a=exp Set variable a to value of an expression

A variable can be set to an expression with only one operator and two
operands. The operators can be any of the following:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 & Bit wise AND (see appendix A)

 | Bit wise OR (see appendix A)

The following are legal:

 a=b+c, a=b+3 a=5+8

 a=b-c a=5-c a=b-10

 a=b*c a=3*5 a=c*3

 a=b/c a=b/2 a=5/b

 a=b&c a=b&8

 a=b|c a=b|15

ARRAYS

In addition to the first 26, there are 52 more long integer variables
accessible with double and triple lower case letters: aa, bb, cc, . . .
xxx, yyy, zzz. The memory space that holds these 52 variables is more
flexible, however. This same variable space can be accessed with an
array variable type. An array variable is one that has a numeric index
component that allows the numeric selection of which variable a program
is to access. This memory space is further made flexible by the fact that
it can hold 51 thirty two bit integers, or 101 sixteen bit integers, or 201
eight bit integers (all signed).

VARIABLES

See Appendix C
for a table
describing
User Assigned
Variables.

The array variables take the following form:

 ab[i]=exp Set variable to a signed 8 bit value where index i = 0...200

 aw[i]=exp Set variable to a signed 16 bit value where index i = 0...100

 al[i]=exp Set variable to a signed 32 bit value where index i = 0...50

The index i may be a number, a variable a thorough z, or the sum or difference
of any two variables a thorough z (variables only).

The same array space can be accessed with any combination of variable
types. Just keep in mind how much space each variable takes. We can
even go so far as to say that one type of variable can be written and another
read from the same space. For example, if the first four eight bit integers
are assigned as follows:

 ab[0]=0

 ab[1]=0

 ab[2]=1

 ab[3]=0

They would occupy the same space as the first single 32 bit number, and due
to the way binary numbers work, would make the thirty two bit variable equal
to 256. The order is most significant to least with ab[0] being the most.

A common use of the array variable type is to set up what is called a buffer.
In many applications, the SmartMotor will be tasked with inputting data about
an array of objects and to do processing on that data in the same order,
but not necessarily at the same time. Under those circumstances it may
be necessary to “buffer” or “store” that data while the SmartMotor processes
it at the proper times.

To set up a buffer the programmer would allocate a block of memory to it,
assign a variable to an input pointer and another to an output pointer. Both
pointers would start out as zero and every time data was put into the buffer the
input pointer would increment. Every time the data was used, the output buffer
would likewise increment. Every time one of the pointers is incriminated, it
would be checked for exceeding the allocated memory space and rolled
back to zero in that event, where it would continue to increment as data
came in. This is a first-in, first-out or “FIFO” circular buffer. Be sure there
is enough memory allocated so that the input pointer never overruns the
output pointer.

VARIABLES

60

STORAGE OF VARIABLES
(Not available in SMXXX5 SmartMotors™)

Newer SmartMotors have 32K of non-volatile EEPROM memory to store
variables when they need to survive the motor powering down.

EPTR=expression Set EEPROM pointer, 0-7999

To read or write into this memory space it is necessary to properly locate the
pointer. This is accomplished by setting EPTR equal to the offset.

VST(variable,index) Store variables

To store a series of variables, use the VST command. In the "variable" space
of the command put the name of the variable and in the "index" space put
the total number of sequential variables that need to be stored. Enter a one
if just the variable specified needs to be stored. The actual sizes of the
variables will be recognized automatically.

VLD(variable,index) Load variables

To load variables, starting at the pointer, use the VLD command. In the
"variable" space of the command put the name of the variable and in the
"index" space put the number of sequential variables to be loaded.

FIXED OR PRE-ASSIGNED FUNCTIONS

In addition to the general purpose variables there are variables that are
gateways into the different functions of the motor itself.

 @P Current position

 @PE Current position error

 @V Current velocity

 ADDR Motor’s self address

 CHN0 RS-232 com error flags

 CHN1 RS-485 com error flags

 CLK Read/Write sample rate counter

 CTR External encoder count variable

 I Last recorded index position

 LEN # of characters in RS-232 buffer

 LEN1 # of characters in RS-485 buffer

VARIABLES

61

See Appendix C
for a table
describing
User Assigned
Variables.

REPORT TO HOST COMMANDS

 Ra...Rzzz Report variables a ... zzz, 78 in all

 Rab[i] Report 8 bit variable value Rab[i]

 Raw[i] Report 16 bit variable value Raw[i]

 Ral[i] Report 32 bit variable value Ral[i]

 RA Report buffered acceleration

 RAIN{port}{ch} Report 8 bit analog input port=A-H, ch= 1-4

 RAMPS Report assigned maximum current

 RBa Report over current status bit

 RBb Report parity error status bit

 RBc Report communications error bit

 RBd Report user math overflow status bit

 RBe Report position error status bit

 RBf Report communications framing error status bit

 RBk Report EEPROM read/write status bit

 RBl Report historical left limit status bit

 RBi Report index status bit

 RBh Report overheat status bit

 RBm Report negative limit status bit

 RBo Report motor off status bit

 RBp Report positive limit status bit

 RBr Report historical right limit status bit

 RBs Report program scan status bit

 RBt Report trajectory status bit

 RBu Report user array index status bit

 RBw Report wrap around status bit

 RBx Report hardware index input level

 RCHN Report combined communications status bits

 RCHN0 Report RS-232 communications status bits

 RCHN1 Report RS-485 communications status bits

 RCLK Report clock value

 RCTR Report secondary counter

 RCS Report RS-232 communications check sum

 RCS1 Report RS-485 communications check sum

 RD Report buffered move distance value

VARIABLES

62

 RDIN{port}{ch} Report 8 bit digital input byte, port=A-H, and
 ch=0-63

 RE Report buffered maximum position error

 RI Report last stored index position

 RKA Report buffered acceleration feed forward coefficient

 RKD Report buffered derivative coefficient

 RKG Report buffered gravity coefficient

 RKI Report buffered integral coefficient

 RKL Report buffered integral limit value

 RKP Report buffered proportional coefficient

 RKS Report buffered sampling interval

 RKV Report buffered velocity feed forward coefficient

 RP Report measured position

 RPE Report present position error

 RMODE Report present positioning mode:

 P Absolute position move

 R Relative position move

 V Velocity move

 T Torque mode

 F Follow mode

 S Step and Direction mode

 C Cam Table mode

 W Drive mode

 X Follow mode with multiplier

 E Position error

 O Motor off

 H Contouring mode

 RS2 Restore RS-232 mode

 RS4 Assign UG to RS-485 control

 RS Report status byte (8 system states)

 RSP Report sample period and version number

 RT Report current requested torque

 RV Report velocity

 RW Report status word (16 system states)

VARIABLES

63

See Appendix C
for a table
describing
User Assigned
Variables.

64

65

Through the two pins, A and B of the I/O connector, quadrature or step
and direction signals can be fed into the SmartMotor at high speeds
and be followed by the motor itself. This feature brings about the
following capabilities:

1 Mode Follow

2 Mode Step and Direction

3 Mode Follow with ratio

4 Mode Step and Direction with ratio

5 Mode Cam

In addition to the above embedded modes of operation, the internal
counter can be set to either count encoder signals or step signals
and be accessible to the internal program or a host through the CTR
variable.

When the SmartMotor is in one of the above five modes it may also run
internal programs and communicate with a host, all at the same time.

MF1, MF2 and MF4 Mode Follow

Mode Follow allows the SmartMotor™ to follow an external encoder.
Three resolutions can be selected through hardware, and a virtually
infinite number of resolutions can be set in firmware using the MFR
command described ahead. Set the hardware for maximum resolution
with the MF4 command. The MF2 The MF1 commands set the hardware
to lesser resolutions, but are obsolete with the advent of the newer
MFR capability.

MF0, MS0

The MF0 and MS0 commands must not be issued during one of the
other follow modes. They are used for an entirely different purpose. If it
is not desired to directly follow an incoming encoder or step signal, but
rather, just to track them and use the counter value within a program or
from a host, then issuing MF0 or MS0 utilizes the maximum resolution
available and makes the value available through the CTR variable.
Issuing MF0 or MS0 will zero that variable and incoming encoder or
step signals will increment or decrement the signed, 32-bit CTR variable
value.

MFDIV=expression Set Ratio divisor

MFMUL=expression Set Ratio multiplier
 where -256.0000 < Ratio < 256.0000

ENCODER AND PULSE TRAIN FOLLOWING

SmartMotors
SMXXX5 do not
have Quadrature
Encoder following
capability built-in,
but can be adapted
to accept
quadrature.

After the appropriate MF# command is issued, or the MS command has been
issued, a floating point ratio can further be applied by the firmware. Since the
SmartMotor is an integer machine, that floating point ratio is accomplished by
dividing one number by another.

MFR Calculate Mode Follow Ratio

MSR Calculate Mode Step Ratio

Once a numerator and denominator have been specified, and the appropriate
hardware mode is selected, the motor can be put into ratio mode with the
MFR or MSR commands (MSR for ratioing incoming step and direction
signals). The following example sets up a 10.5:1 relationship:

 MF4 ‘Read in full quadrature decode
 MFMUL=2 ‘10.5:1=21:2
 MFDIV=21
 D=0 ‘be sure D is zero

 MFR ‘Invoke calculation

 G ‘Start

Once in a ratio mode the V=# and D=# commands will still work. They will
invoke a phase shift of length D at a relative rate determined by V. For that
reason, D must be zeroed out before issuing an MFR or MSR command or
unexpected shifting could be taking place. In applications such as a Web
Press, this ability to phase shift can be very useful.

MC Mode Cam

A cam is a basically round but irregular shape that rotates and causes a
follower to move up and down in a profile determined by the shape of the
cam’s exterior.

Since the beginning of industrialization, cams have been used to create
complex, reciprocating motion. Cams are most often carved out of steel and
changing them, or having them invoke motion a great distance away are
impractical. The SmartMotor provides an electronic alternative. Putting an
encoder on the rotating part of a machine, sending the signals to a SmartMotor
and programming the cam profile into the SmartMotor allows for the same
complex, repeating motions to be accomplished without any of the typical
mechanical limitations.

BASE=expression Base length

Part of defining a Cam relationship is specifying how many incoming encoder
counts there are for one full cam rotation. Simply set BASE equal to
this number.

ENCODER AND PULSE TRAIN FOLLOWING

66

SIZE=expression Number of Cam data entries

The upper variable array space holds the cam profile data. To instruct the
SmartMotor as to how many data points have been specified, set SIZE equal
to that number. The cam firmware looks at words (16 bit numbers). The
maximum number of words that can be used is 100. The cam firmware will
perform linear interpolation between those entries, as well as between the
last and the first as the cam progresses through the end of the table and back
to the beginning. The cam table entries occupy the same space as variables
aa through yyy which is the same space as the array variables. Invoking
Cam Mode is done as follows:

 BASE=2000 ‘Cam period

 SIZE=25 ‘Data segments, this denes the data
 table size.

 ‘CTR data, note the period at the end

 aw[0] 0 10 20 30 40 50 60 70 80 90 100 110 120 120

 110 100 90 80 70 60 50 40 30 20 10 0.

 MF0 ‘Reset external encoder to zero

 O=0 ‘Reset internal encoder position

 MC ‘Buffer CAM Mode

 G ‘Start following the external encoder
 using cam data

MD50 Drive Mode

The MD50 command causes the SmartMotor to emulate a traditional servo
and amplifier. In this mode, it can be used with yet another controller sending
a standard +/-10Volt analog command signal.
A small voltage divider is necessary to convert
the +/-10 volts into the 0 to 5 volt signal the
motor takes as input. The circuit considers the
SmartMotor's input impedance. An additional
device may be desired to take the single ended
encoder signals coming out of the SmartMotor
and make them differential for more noise immu-
nity during their travel back to the external controller. An additional measure
of optically isolating the encoder signals should be taken to avoid ground
loops back to the control.

 MD50 ‘Set Drive Mode

ENCODER AND PULSE TRAIN FOLLOWING

67

Do not use variable
aa through zzz
while camming.

Voltage divider
converting the
+/-10 volt signal into
a 0-5 volt signal

68

ENC0, ENC1 Encoder Select

The ENC1 command causes the SmartMotor to servo off of an external
encoder connected to inputs A and B. This can be useful if the external
encoder has the advantage of being more accurate. The ENC0 command
restores the default mode of servoing off of the internal encoder.

 ENC1 ‘Servo off of external encoder

 ENC0 ‘Servo from internal encoder (default)

ENCODER AND PULSE TRAIN FOLLOWING

69

SYSTEM STATE FLAGS

The following binary values can be tested by IF and WHILE control
flow expressions, or assigned to any variable. They may all be reported
using RB{bit} commands. Some may be reset using Z{bit} commands
and some are reset when accessed. The first 8 states are reported in
combination by the RS command. RW reports sixteen of these flags
in combination.

By writing programs to periodically test these bits, a SmartMotor applica-
tion can be very “smart” about its own inner-workings and doings.

 Bo Motor off status bit 7

 Bh Excessive temperature status bit 6

 Be Excessive position error status bit 5

 Bw Wraparound occurred status bit 4

 Bi Index report available status bit 3

 Bm Real time negative limit status bit 2

 Bp Real time positive limit status bit 1

 Bt Trajectory in progress status bit 0

 Ba Over current state occurred

 Bb Parity error occurred

 Bc Communication overflow occurred

 Bd User math overflow occurred

 Bf Communications framing error occurred

 Bk Program check sum/EEPROM failure

 Bl Historical left limit

 Br Historical right limit

 Bs Syntax error occurred

 Bu User array index error occurred

 Bx Hardware index input level

If action is taken based on some of the error flags, the flag will need to
be reset in order to look out for the next occurrence, or in some cases
depending on how the code is written, in order to keep from acting
over and over again on the same occurrence. The flags that need to
be reset are listed. Their letter designator is preceded by the letter Z
in the following table:

70

RESET SYSTEM STATE FLAGS

 Za Reset over current violation occurred

 Zb Reset parity error occurred

 Zc Reset com overflow error occurred

 Zd Reset user math overflow occurred

 Zf Reset communications framing error occurred

 Zl Reset historical left limit occurred

 Zr Reset historical right limit occurred

 Zs Reset syntax error occurred

 Zu Reset user array index error occurred

 Zw Reset wraparound occurred

 ZS Reset all Z{bit} state flags

The TWAIT command pauses program execution until motion is complete.
Instead of using TWAIT, a routine could be written that does much more.
To start with, the following code example would perform the same function
as TWAIT:

 WHILE Bt ‘While trajectory
 LOOP ‘Loop back

Alternatively, the above routine could be augmented with code that took
specific action in the event of an index signal as is shown in the following
example

 WHILE Bt ‘While trajectory
 IF Bi ‘Check index
 GOSUB500 ‘take care of it
 ENDIF ‘end checking
 LOOP ‘Loop back

SYSTEM STATE FLAGS

G also resets
several system
state flags

71

The following is a list of all of the commands used to relate to the
SmartMotor's many I/O ports, grouped by port.

THE MAIN RS-232 PORT

 ECHO ECHO back all received characters

 SADDR# Set ADDRess (0 to 120)

 SILENT Suppress print messages

 TALK Re-activate print message

 SLEEP Ignore all commands except WAKE

 WAKE Consider all following commands

 BAUD19200 Set baud rate to 19200 bps

 OCHN (RS2,0,N,38400,1,8,D)
 OpenChnl - RS-232, Channel 0, No parity,
 38.4k bps, 1 stop, 8 data, as Data

 OCHN (RS4,0,N,38400,1,8,C)
 OpenChnl - RS-485 (w/adapter), Channel 0, No
 parity, 38.4k bps, 1 stop, 8 data, as Control

 IF LEN>0 Check to see if any (or how much) data is in the
 16 byte input buffer, Data mode

 c=GETCHR Get byte from buffer into variable c for Data
 mode

 PRINT (“Char Rcd:”,c,#13)
 Print text, data and ASCII code for carriage
 return

THE G PORT

 UGI Redefine as general input

 UGO Redefine as general output (Open collector,
 pulled to 5V)

 UG Return pin to default start function, when low
 motor starts motion

 UG=0 Set G port Low (UG=a to set to variable a)

 UG=1 Set G port High (Open collector, weakly pulled
 to 5V internally)

 a=UGI Set variable a to digital input

 a=UGA Set a to analog input, 0 to 1023 = 0 to 5V

INPUTS AND OUTPUTS

72

THE LIMIT PORTS C AND D

 UCI Redefine Right Limit as general input
 (UDI for Left Limit)

 UCO Redefine Right Limit as general output
 (UDO for Left Limit)

 UCP Return pin to limit function (UDM for Left Limit)

 UC=0 Set Right Limit Low (UD=0 for Left, or UD=a to set
 to variable a)

 UC=1 Set Right Limit High (UD=1 for Left Limit)

 a=UCI Set variable a to digital input (UDI for Left Limit)

 a=UCA Set a to analog input, 0 to 1023 = 0 to 5V (UDA for
 Left Limit)

COUNTER FUNCTIONS OF PORTS A AND B

 MF4 Set Mode Follow with full quadrature

 MFR Set Mode Follow with ratio for gearing

 MS Mode Step and Direction

 MC Mode Cam

 MF0 Set follow mode to zero and increment counter only

 MS0 Set step mode to zero and increment counter only

 a=CTR Set variable a to counter value

GENERAL I/O FUNCTIONS OF PORTS A AND B

 UAI Set port A to input (UBI for port B)

 UAO Set port A to output (UBO for port B)

 UA=0 Set port A Low (UB=0 for port B, or UB=a to set to
 variable a)

 UA=1 Set port A High (UB=1 for port B)

 a=UAI Set variable a to digital input (UBI for port B)

 a=UAA Set a to analog input, 0 to 1023 = 0 to 5V (UBA
 for port B)

INPUTS AND OUTPUTS

73

INPUTS AND OUTPUTS

THE ANILINK PORT (USING I2C PROTOCOL)

 AOUTB,c Send variable c out to Analog I/O board
 addressed as B

 DOUTB0,c Send variable c out to Digital I/O board addressed
 as B0

 c=AINB2 Set variable c to input 2 from Analog I/O board
 addressed as B

 c=DINB0 Set variable c to input from Digital I/O board
 addressed as B0

 PRINTB(“Temp:”,c,#32)
 Print to LCD on network - text, data and ASCII code

THE ANILINK PORT (USING RS-485 PROTOCOL)

 OCHN(RS4,1,N,38400,1,8,D)
 OpenChnl - RS-485, Channel 1, No parity, 38.4k
 bps, 1 stop, 8 data, as Data

 IF LEN1>0 Check to see if data is in the 16 byte input buffer

 c=GETCHR1 Get byte from buffer into variable c

 PRINT1(“Char Rcd:”,c,#13) Print text, data and ASCII code

 ECHO1 ECHO back all received characters

 SILENT1 Suppress print messages

 SLEEP1 Ignore all commands except WAKE

 WAKE1 Consider all following commands

THE ANILINK PORT AS GENERAL I/O

 UEI Set port E to input (UFI for port F)

 UEO Set port E to output (UFO for port F)

 UE=0 Set port E Low (UF=0 for port F, or UF=c to set to
 variable c)

 UE=1 Set port E High (UF=1 for port F)

 c=UEI Set variable c to digital input (UFI for port F)

 c=UEA Set c to analog input, 0 to 1023 = 0 to 5V (UFA for
 port F)

 Ports A through G have internal 5k Ohm resistive
 pull-ups.

The standard SmartMotor brings out 5 volt power and ground, as well as
seven I/O points. Each one has multiple functions. They are UA, UB, UC,
UD, UE, UF and UG and have the following functions:

 UA Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 External Encoder A Input
 Step and Direction, Step Input

 UB Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 External Encoder B Input
 Step and Direction, Direction Input

 UC Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Positive Limit Input

 UD Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Negative Limit Input

 UE Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 AniLink Data I/O
 AniLink RS-485 Signal A

 UF Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 AniLink Clock Output
 AniLink RS-485 Signal B

 UG Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Start Motion (or GO) Input

INPUTS AND OUTPUTS

74

When used as general I/O, these commands will select the port function.

 UAI Assign pin A to input state
 UAO Assign pin A to output state
 UA=0 Set UA to zero volts
 UA=1 Set UA to 5 volts
 a=UAI Read UA digital value, 0 or 1
 a=UAA Read UA analog voltage

 UBI Assign pin B to input state
 UBO Assign pin B to output state
 UB=0 Set UB to zero volts
 UB=1 Set UB to 5 volts
 a=UBI Read UB digital value, 0 or 1
 a=UBA Read UB analog voltage

 UCI Assign pin C to input state
 UCO Assign pin C to output state
 UCP Re-assign pin C to +limit action
 UC=0 Set UC to zero volts
 UC=1 Set UC to 5 volts
 a=UCI Read UC digital value, 0 or 1
 a=UCA Read UC analog voltage

 UDI Assign pin D to input state
 UDO Assign pin D to output state
 UDM Re-assign pin D to -limit action
 UD=0 Set UD to zero volts
 UD=1 Set UD to 5 volts
 a=UDI Read UD digital value, 0 or 1
 a=UDA Read UD analog voltage

 UEI Assign pin E to input state
 UEO Assign pin E to output state
 UE=0 Set UE to zero volts
 UE=1 Set UE to 5 volts
 a=UEI Read UE digital value, 0 or 1
 a=UEA Read UE analog voltage

 UFI Assign pin F to input state
 UFO Assign pin F to output state
 UF=0 Set UF to zero volts
 UF=1 Set UF to 5 volts
 a=UFI Read UF digital value, 0 or 1
 a=UFA Read UF analog voltage

INPUTS AND OUTPUTS

75

 UGI Assign pin G to input state
 UGO Assign pin G to output state
 UG Re-assign pin G to “GO”
 UG=0 Set UG to zero volts
 UG=1 Set UG to 5 volts
 a=UGI Read UG digital value, 0 or 1
 a=UGA Read UG analog voltage

The UAA, UBA, UCA, UDA, UEA, UFA and UGA variables reflect the analog
voltages at the port pins regardless of how the pins are configured. The
analog voltage of any pin can be read without effecting it's current mode of
operation in any way. For example, a pin could be used as an output and
then the analog input value could be read to see if it happened to be shorted,
or RS-485* signal bias could be monitored at ports E and F.

The encoder and step counting capabilities of ports A and B are described in
the section on External Encoder Modes. The serial data capabilities of ports
E and F are described in the section on communications.

ANILINK I/O MODULES

In the event the on-board I/O is not enough, additional I/O can be connected
via the AniLink port. A variety of Analog and Digital I/O cards are available,
as well as peripheral devices like LCD and LED displays, push-wheel
input devices, pendants and more. These products communicate with the
SmartMotor through the AniLink port using I2C protocol.

OUTPUT ASSIGNMENTS

 AOUT{address},exp Output byte to analog address=A-H

 DOUT{address}{ch},exp Output byte to network, address=A-H,
 ch=0-63

INPUT ASSIGNMENTS

 var=AIN{address}{input} 8 bit analog input from network,
 address=A-H, and input=1-4

 var=DIN{address}{ch} 8 bit digital in from network,
 address=A-H, and ch=0-63

INPUTS AND OUTPUTS

76

*RS-485 is not
available as stan-
dard on SMXXX5
SmartMotors

77

While all SmartMotor I/O is confined to operate between 0 and 5VDC, some
circuitry exists to accomodate spikes above and below the operational range
as long as those spikes are moderate and short lived.

INPUTS AND OUTPUTS

Knowing the
SmartMotor's internal
schematic can be
useful when
designing external
interfaces.

Notice by the schamitic that an I/O point can be
configured as an output but still be readable as an
analog input because the connections to the CPU
are seperate.

All SmartMotor I/O points default to inputs when power is applied to the
motor. It is the User Program that takes control after that. Because of the
pull-up resistor, the voltage read at each port will be about 5VDC. When
used as outputs to turn on external devices, it is highly recommended to
design the system such that +5V is OFF and 0V is ON. This will prevent
external equipment from being turned on immediately after power-up, before
the User Program has a chance to take over.

78

Motor Connectors
Pin Identification

INPUTS AND OUTPUTS

79

INPUTS AND OUTPUTS

Motor Connector
Locator

Please note the
Memory Module
location. This
module uses the
same type of
connector as the
AniLink I/O. If a
Memory Module is
plugged into the
AniLink I/O, it won't
break, but it won't
work either.

80

SmartMotor +5V

SmartMotor I/O Port

SmartMotor Signal GND

I/O +

I/O -

Typical DC Input Module (-IDC5 part numbers)

1

2

3

4
I/O +

I/O -

Typical AC Input Module (-IAC5 part numbers)

I/O +

I/O -

Typical DC Output Module (-ODC5 part numbers)

I/O +

I/O -

Typical AC Output Module (-OAC5 part numbers)

SmartMotor +5V

SmartMotor I/O Port

SmartMotor Signal GND

SmartMotor +5V

SmartMotor I/O Port

SmartMotor Signal GND

SmartMotor +5V

SmartMotor I/O Port

SmartMotor Signal GND

The 5 Volt Logic of
the SmartMotor can
interface to 24 Volt
devices through the
use of standard
interface modules.

INPUTS AND OUTPUTS

81

While there are a variety of options, the default mode for communicating
with a SmartMotor is serial RS-232 for the main port. Each SmartMotor
is equipped with a secondary serial port called81 the AniLink port.
The AniLink port on a SmartMotor can be configured to communicate
with either RS-485 or I2C. The I2C connects SmartMotor peripherals
like LCD displays, I/O cards, etc., while the RS-485 will interface bar
code readers, light curtains, and other “intelligent” peripherals including
other SmartMotors if desired. SmartMotor models SMXXX5 do not have
RS-485 capability in their AniLink ports.

To maximize the flexibility of the SmartMotor, these serial communica-
tions ports are fully programmable with regard to bit-rate and protocol.

There is a sixteen-byte input buffer for the primary RS-232 port and
another for the secondary RS-485 port. These buffers ensure that no
arriving information is ever lost, although when either port is in data
mode, it is the responsibility of the user program within the motor to keep
up with the incoming data.

By default, the primary RS-232 channel, which shares a connector with
the incoming power, is set up as a command port with the following
default characteristics:

 Default: Other Options:
 Type: RS-232 RS-485 (w/adapter)
 Parity: None Odd or Even
 Bit Rate: 9600 2400 to 38400
 Stop Bits: 1 0 or 2
 Data Bits: 8 7
 Mode: Command Data
 Echo: Off On

If the cable used is not provided by Animatics, make sure the SmartMotor's
power and RS-232 connections are correct.

Because of the buffers on
both sides there is no need
for any hand shaking pro-
tocol when commanding
the SmartMotor. Most commands execute in less time than it would take
to receive the next one. Be careful to allow processes time to complete,
particularly relatively slow processes like printing to a connected LCD
display or executing a full subroutine. Since the EEPROM long term
memory is slow to write, the terminal software does employ two way
communication to regulate the download of a new program.

COMMUNICATIONS

When using I2C, the
SmartMotor is always
the bus master. You
cannot communicate
between SmartMotors
via I2C.

DAISY CHAINING RS-232

Multiple SmartMotors can
be connected to a single
RS-232 port as shown.

This diagram could be
expanded to as many as 120 motors. For
independent motion, however, each motor
must be programmed with a unique address.
In a multiple motor system the programmer
has the choice of putting a host computer in
control or having the first motor in the chain
be in control of the rest.

SADDR# Set motor to new address

The SADDR# command causes a SmartMotor
to respond exclusively to commands addressed
to it. The range of address numbers is from 1
to 120. Once each motor in a chain has a unique address, each individual
motor will communicate normally after its address is sent at least once over
the chain. To send an address, add 128 to its value and output the binary
result over the communication link. This puts the value above the ASCII
character set, quickly and easily differentiating it from all other commands or
data. The address needs to be sent only once until the host computer, or
motor, wants to change it to something else. Sending out an address zero
(128) will cause all motors to listen and is a great way to send global data such
as a G for starting simultaneous motion in a chain. Once set, the address
features work the same for RS-232 and RS-485 communications.

Unlike the RS-485 star topology, the consecutive nature of the RS-232 daisy-
chain creates the opportunity for the chain to be independently addressed
entirely from the host, rather than by having a uniquely addressed program
in each motor. Setting up a system this way can add simplicity because the
program in each motor can be exactly the same. If the RUN? Command is the
first in each of the motor’s programs, the programs will not start upon power
up. Addressing can be worked out by the host prior to the programs being
started later by the host sending the RUN command globally.

SLEEP, SLEEP1 Assert sleep mode

WAKE, WAKE1 De-assert SLEEP

Telling a motor to sleep causes it to ignore all commands except the WAKE
command. This feature can often be useful, particularly when establishing
unique addresses in a chain of motors. A 1 at the end of the command
specifies the AniLink RS-485 port.

COMMUNICATIONS

82

ECHO, ECHO1 ECHO input

ECHO_OFF, ECHO_OFF1 De-assert ECHO

The ECHO and ECHO_OFF commands toggle the echoing of data input.
Because the motors do not echo character input by default, consecutive
commands can be presented, configuring them with unique addresses, one
at a time. If the host computer or controller sent out the following command
sequence, each motor would have a unique and consecutive address.

If a daisy chain of SmartMotors have been powered off and back on, the
following commands can be entered into the SmartMotor Interface to address
the motors (0 equals 128, 1 equals 129, etc.). Some delay should be inserted
between commands when sending them from a host computer.

 0SADDR1
 1ECHO
 1SLEEP
 0SADDR2
 2ECHO
 2SLEEP
 0SADDR3
 3ECHO
 0WAKE

Commanded by a user program in the first motor, instead of a host, the same
daisy chain could be addressed with the following sequence:

 SADDR1 'Address the first motor
 ECHO 'Echo for host data
 PRINT(#128,“SADDR2”,#13) '0SADDR2
 WAIT=10 'Allow time
 PRINT(#130,“ECHO”,#13) '2ECHO
 WAIT=10
 PRINT(#130,“SLEEP”,#13) '2SLEEP
 WAIT=10
 PRINT(#128,“SADDR3”,#13) '0SADDR3
 WAIT=10
 PRINT(#131,“ECHO”,#13) '3ECHO
 WAIT=10
 PRINT(#128,“WAKE”,#13) '0WAKE

 WAIT=10

The two communications ports have enormous flexibility. To select from the
vast array of options, use the OCHN command.

COMMUNICATIONS

83

OCHN
 Options:
 Type: RS2, RS4 RS-232 or RS-485
 Channel: 0, 1 or 2 0=Main, 1=AniLink
 Parity: N, O or E None, Odd or Even
 Bit rate: 2400, 4800, 9600, 19200, 38400 baud
 Stop bits: 0, 1 or 2
 Data bits: 7 or 8
 Mode: C or D Command or Data

Here is an example of the OCHN command:

 OCHN(RS2,0,N,38400,1,8,D)

If the primary communication channel (0) is opened as an RS-485 port, it will
assume the RS-485 adapter is connected to it. If that is the case then pin
G in the same connector is assigned the task of directing the adapter to be
in Transmit or Receive mode in accordance with the motor’s communication
activity and will no longer be useful as an I/O port to the outside world.

CCHN(type,channel) Close a communications channel

Use the CCHN command to close a communications port when desired.

BAUD# Set BAUD rate of main port

The BAUD# command presents a convenient way of changing only the bit rate
of the main channel. The number can be from 2400 to 38400 bps.

PRINT(), PRINT1()
 Print to RS-232 or AniLink channel

A variety of data formats can exist within the parentheses of the PRINT()
command. A text string is marked as such by enclosing it between double
quotation marks. Variables can be placed between the parentheses as well
as two variables separated by one operator. To send out a specific byte value,
prefix the value with the # sign and represent the value with as many as three
decimal digits ranging from 0 to 255. Multiple types of data can be sent in a
single PRINT() statement by separating the entries with commas. Do not use
spaces outside of text strings because SmartMotors use spaces as delimiters
along with carriage returns and line feeds.

The following are all valid print statements and will transmit data through
the main RS-232 channel:

 PRINT(“Hello World”) ‘text
 PRINT(a*b) ‘exp.

 PRINT(#32) ‘data

 PRINT(“A”,a,a*b,#13) ‘all

COMMUNICATIONS

84

PRINT1 prints to the AniLink port with RS-485 protocol while PRINTA prints
to the AniLink port using I2C protocol in such a way as to send data to an
LCD display or standard parallel input line printer (with a DIO-100 card on
the AniLink bus).

SILENT, SILENT1 Suppress PRINT() outputs

TALK, TALK1 De-assert silent mode

The SILENT mode causes all PRINT() output to be suppressed. This is
useful when talking to a chain of motors from a host, when the chain would
otherwise be talking within itself because of programs executing that contain
PRINT() commands.

! Wait for RS-232 character to be received

A single exclamation mark will cause program execution to stop until a
character is received. This can be handy under certain circumstances like
debugging a program in real time.

a=CHN0, a=CHN1 RS-485 communications error flags

The CHN0 and CHN1 variables hold binary coded information about the
historical errors experienced by the two communications channels. The
information is as follows:

 Bit Value Meaning

 0 1 Buffer overflow
 1 2 Framing error
 2 4 Command scan error
 3 8 Parity error

A subroutine that printed the errors to an LCD display would look like the
following:
 C911
 IF CHN0 ‘If CHN0 != 0
 DOUT0,1 ‘Home LCD cursor
 IF CHN0&1
 PRINTA(“BUFFER OVERFLOW”)
 ENDIF
 IF CHN0&2
 PRINTA(“FRAMING ERROR”)
 ENDIF
 IF CHN0&4
 PRINTA(“COMMAND SCAN ERROR”)
 ENDIF
 IF CHN0&8
 PRINTA(“PARITY ERROR”)

COMMUNICATIONS

85

 ENDIF
 CHN0=0 ‘Reset CHN0
 ENDIF
 RETURN

a=ADDR Motor’s self address

If the motor’s address (ADDR) is set by an external source, it may still
be useful for the program in the motor to know what address it is set to.
When a motor is set to an address, the ADDR variable will reflect that
address from 1 to 120.

GETTING DATA FROM A COM PORT

If a com port is in Command Mode, then the motor will simply respond
to arriving commands it recognizes. If the port is opened in Data Mode,
however, then incoming data will start to fill the 16 byte buffer until it is
retrieved with the GETCHR command.

 a=LEN Number of characters in RS-232 buffer
 a=LEN1 Number of characters in RS-485 buffer
 a=GETCHR Get character from RS-232 buffer
 a=GETCHR1 Get character from RS-485 buffer

The buffer is a standard FIFO (First In First Out) buffer. This means that if
the letter A is the first character the buffer receives, then it will be the first
byte offered to the GETCHR command. The buffer exists to make sure that
no data is lost, even if the program is not retrieving the data at just the
right time. Two things are very important when dealing with a data buffer
for the protection of the data:

 1) Never GETCHR if there is no CHR to GET.
 2) Never let the buffer overflow.

The LEN variable holds the number of characters in the buffer. A program
must see that the LEN is greater than zero before issuing a command like:
a=GETCHR. Likewise, it's necessary to arrange the application so that,
overall, data will be pulled out of the buffer faster than it comes in.

The ability to configure the communication ports for any protocol as well as
to both transmit and receive data allows the SmartMotor to interface to a vast
array of RS-232 and RS-485 devices. Some of the typical devices that would
interface with SmartMotors over the communication interface are:

 1) Other SmartMotors
 2) Bar Code Readers
 3) Light Curtains
 4) Terminals
 5) Printers

COMMUNICATIONS

86

The following is an example program that repeatedly transmits a message
to an external device (in this case another SmartMotor) and then takes a
number back from the device as a series of ASCII letter digits, each ranging
from 0 to 9. A carriage return character will mark the end of the received
data. The program will use that data as a position to move to.

 A=500 ‘Preset Accel.
 V=1000000 ‘Preset Vel.
 P=0 ‘Zero out Pos.
 O=0 ‘Declare origin
 G ‘Servo in place
 OCHN(RS2,0,N,9600,1,8,D)
 PRINT(“RP”,#13)
 C0
 IF LEN ‘Check for chars
 a=GETCHR ‘Get char
 IF a==13 ‘If carriage return
 G ‘Start motion
 P=0 ‘Reset buffered P to zero
 PRINT(“RP”,#13) ‘Next
 ELSE
 P=P*10 ‘Shift buffered P
 a=a-48 ‘Adjust for ASCII
 P=P+a ‘Build buffered P
 ENDIF
 ENDIF
 GOTO0 ‘Loop forever

The ASCII code for zero is 48. The other nine digits count up from there so
the ASCII code can be converted to a useful number by subtracting the value
of 0 (ASCII 48). The example assumes that the most significant digits will be
returned first. Any time it sees a new digit, it multiplies the previous quantity
by 10 to shift it over and then adds the new digit as the least significant.
Once a carriage return is seen (ASCII 13), motion starts. After motion is
started, P (Position) is reset to zero in preparation for building up again. P is
buffered so it will not do anything until the G command is issued.

COMMUNICATIONS

87

88

89

PID FILTER CONTROL

The SmartMotor™ includes a very high quality, high performance brush-
less D.C. servomotor. It has a rotor with extremely powerful rare earth
magnets and a stator (the outside, stationary part) that is a densely
wound multi-slotted electro-magnet.

Controlling the position of a brushless D.C. servo’s rotor with only electro-
magnetism working as a lever is like pulling a sled with a rubber band.
Accurate control would seem impossible.

The parameters that makes it all work are found in the PID (Proportional,
Integral, Derivative) filter section. These are the three fundamental
coefficients to a mathematical algorithm that intelligently recalculates and
delivers the power needed by the motor about 4,000 times per second.
The input to the PID filter is the instantaneous actual position minus
the desired position, be it at rest, or part of an ongoing trajectory. This
difference is called the error.

The Proportional parameter of the filter creates a simple spring constant.
The further the shaft is rotated away from its target position, the more
power is delivered to return it. With this as the only parameter the
motor shaft would respond just as the end of a spring would if it was
grabbed and twisted.

If the spring is twisted and let go it will vibrate wildly. This sort of vibration
is hazardous to most mechanisms. In this scenario a shock absorber
is added to cancel the vibrations which is the equivalent of what the
Derivative parameter does. If a person sat on the fender of a car, it would
dip down because of the additional weight based on the constant of the
car’s spring. It would not be known if the shocks were good or bad.
If the bumper was jumped up and down on, however, it would quickly
become apparent whether the shock absorbers were working or not.
That’s because they are not activated by position but rather by speed.
The Derivative parameter steals power away as a function of the rate of
change of the overall filter output. The parameter gets its name from
the fact that the derivative of position is speed. Electronically stealing
power based on the magnitude of the motor shafts vibration has the
same effect as putting a shock absorber in the system, and the algorithm
never goes bad.

Even with the two parameters a situation can arise that will cause the
servo to leave its target created by “dead weight”. If a constant torque is
applied to the end of the shaft, the shaft will comply until the deflection
causes the Proportional parameter to rise to the equivalent torque. There
is no speed so the Derivative parameter has no effect. As long as the
torque is there, the motor’s shaft will be off of its target.

That’s where the Integral parameter comes in. The Integral parameter
mounts an opposing force that is a function of time. As time passes and
there is a deflection present, the Integral parameter will add a little force
to bring it back on target with each PID cycle. There is also a separate
parameter (KL) used to limit the Integral parameter’s scope of what it

THE PID FILTER

While the Derivative
term usually acts to
dampen instability,
this is not the true
definition of the term.
It is possible to
cause instability by
setting the Derivative
term too high.

can do so as not to over react.

Each of these parameters have their own scaling factor to tailor the overall
performance of the filter to the specific load conditions of any one particular
application. The scaling factors are as follows:

 KP Proportional

 KI Integral

 KD Derivative

 KL Integral Limit

TUNING THE FILTER

The task of tuning the filter is complicated by the fact that the parameters
are so interdependent. A change in one can shift the optimal settings of the
others. The automatic utility makes all of the settings easy, but it still may be
necessary to know how to tune a servo.

When tuning the motor it is useful to have the status monitor running which will
monitor various bits of information that will reflect the motors performance.

 KP=exp Set KP, proportional coefficient

 KI=exp Set KI, time-error coefficient

 KD=exp Set KD, damping coefficient

 KL=exp Set KL, time-error term limit

 F Update PID filter

The main objective in tuning a servo is to get KP as high as possible, while
maintaining stability. The higher the KP the stiffer the system and the more
under control it is. A good start is to simply query what to begin with (RKP)
and then start increasing it 10% to 20% at a time. It is a good idea to start with
KI equal to zero. Keep in mind that the new settings do not take effect until
the F command is issued. Each time KP is raised, try physically to destabilize
the system, by bumping or twisting it. Or, have a program loop cycling that
invokes abrupt motions. As long as the motor always settles to a quiet rest,
keep raising KP. Of course if the SMI Tuning Utility is being used, it will
employ a step function and show more precisely what the reaction is.

As soon as the limit is reached, find the appropriate derivative compensation.
Move KD up and down until the position is found that gives the quickest
stability. If KD is way too high, there will be a grinding sound. It is not really
grinding, but it is a sign to go the other way. A good tune is not only stable,
but reasonably quiet. After optimizing KD, it may be possible to raise KP a
little more. Keep going back and forth until there's nothing left to improve the
stiffness of the system. After that it's time to take a look at KI.

THE PID FILTER

90

KI, in most cases, is used to compensate for friction. Without it the SmartMotor
will never exactly reach the target. Begin with KI equal to zero and KL equal
to 1000. Move the motor off target and start increasing KI and KL. Keep KL
at least ten times KI during this phase.

Continue to increase KI until the motor always reaches its target, and once
that happens add about 30% to KI and start bringing down KL until it hampers
the ability for the KI term to close the position precisely to target. Once that
point is reached, increase KL by about 30% as well. The Integral term needs
to be strong enough to overcome friction, but the limit needs to be set so that
an unruly amount of power will not be delivered if the mechanism were to jam
or simply find itself against one of its ends of travel.

E=expression Set maximum position error

The difference between where the motor shaft is and where it is supposed to
be is appropriately called the “error”. The magnitude and sign of the error is
delivered to the motor in the form of torque, after it is put through the PID filter.
The higher the error, the more out of control the motor is. Therefore, it is often
useful to put a limit on the allowable error, after which time the motor will be
turned off. That is what the E command is for. It defaults to 1000 encoder
counts, but can be set from 1 to 32,000.

There are still more parameters that can be utilized to reduce the position error
of a dynamic application. Most of the forces that aggravate a PID loop through
the execution of a motion trajectory are unpredictable, but there are some that
can be predicted and further eliminated preemptively.

KG=expression Set KG, Gravity offset term

The simplest of these is gravity. Why burden the PID loop with the effects of
gravity in a vertical load application, if it can simply be weeded out. If in a
particular application, motion would occur with the power off due to gravity,
a constant offset can be incorporated into the filter to balance the system.
KG is the term. KG can range from -8388608 to 8388607. To tune
KG, simply make changes to KG until the load equally favors upward and
downward motion.

KV=expression Set KVff, velocity feed forward

Another predictable cause of position error is the natural latency of the PID
loop itself. At higher speeds, because the calculation takes a finite amount of
time, the result is somewhat “old news”. The higher the speed, the more the
actual motor position will slightly lag the trajectory calculated position. This
can be programmed out with the KV term. KV can range from zero to 65,535.
Typical values range in the low hundreds. To tune KV simply run the motor at
a constant speed, if the application will allow, and increase KV until the error
gets reduced to near zero and stays there. The error can be seen in real time
by activating the Monitor Status window in the SMI program.

THE PID FILTER

91

KA=expression Set KAff, acceleration feed forward

Force equals mass times acceleration. If the SmartMotor is accelerating
a mass, it will be exerting a force during that acceleration. This force will
disappear immediately upon reaching the cruising speed. This momentary
torque during acceleration is also predictable and need not aggravate the PID
filter. It’s effects can be programmed out with the KA term. It is a little more
difficult to tune KA, especially with hardware attached. The objective is to
arrive at a value that will close the position error during the acceleration and
deceleration phases. It is better to tune KA with KI set to zero because
KI will address this constant force in another way. It is best to have KA
address 100% of the forces due to acceleration, and leave the KI term to
adjust for friction.

KS=expression Set KS, dampening sample rate

Reduce the sampling rate of the derivative term, KD, with the KS term.
This can sometimes add stability to very high inertial loads. Useful values
of KS range from 1 (the default) to 20. Results will vary from application
to application.

The PID rate of the SmartMotor can be slowed down.

PID1 Set normal PID update rate

PID2 Divide normal PID update rate by 2

PID4 Divide normal PID update rate by 4

PID8 Divide normal PID update rate by 8

The trajectory and PID filter calculations occur within the SmartMotor™ 4069
times per second. That is faster than is necessary for very good control,
especially with the larger motors. A reduction in the PID rate can result in an
increase in the SmartMotor™ application program execution rate. The PID2
command will divide the PID rate by two, and the others even more. The
most dramatic effect on program execution rate occurs with PID4. PID8 does
little more and is encroaching upon poor control. If the PID rate is lowered,
keep in mind that this is the “sample” rate that is the basis for Velocity values,
Acceleration values, PID coefficients and WAIT times. If the rate is cut in half,
expect to do the following to keep all else the same:

 Halve WAIT times

 Double Velocity

 Increase Acceleration by a factor of 104

KGON Change Drive Characteristic for Vertical Application

KGOFF Restore Drive Characteristic to Default

Vertical applications can be particularly hard to tune, even with the KG term.
Often this is seen in an awkward sound or vibration occurring when the
motor decelerates on its way down. The filter and the drive electronics are
challenged to deal with the situation where the motor wants to go in the

THE PID FILTER

92

same direction it is told to go, entirely on its own volition. The SmartMotor is
equipped with a special drive mode designed to deal with this very situation.
This mode of operation is invoked with the KGON command. Because this
mode is so different from the standard drive mode, it will be necessary to tune
the motor once again. The reason this more stable drive mode is not the
default is because like most good things, it comes at a cost. The SmartMotor's
amplifier is not as efficient at converting current to torque in this mode as it
is in the default mode and so it is necessary to verify the motor's reasonably
cool operation when KGON is in use. Use KGOFF to revert back to the
standard drive mode.

CURRENT LIMIT CONTROL

AMPS=expression Set current limit, 0 to 1023

In some applications, if the motor misapplied full power, the attached
mechanism could be damaged. It can be useful to reduce the maximum
amount of current available thus limiting the torque the motor can put out. Use
the AMPS command with a number, variable or expression within the range
of 0 to 1023. The units are tenths of a percent of full scale peak current, and
varies in actual torque with the size of the SmartMotor.

THE PID FILTER

93

94

95

The SmartMotor’stm language allows the programmer to access data on
the binary level. Understanding binary data is very easy and useful when
programming the SmartMotor or any electronic device. What follows is an
explanation of how binary data works.

All digital computer data is stored as binary information. A binary element
is one that has only two states, commonly described as “on” and “off”
or “one” and “zero”. A light switch is a binary element. It can either
be “on” or “off”. A computer’s memory is nothing but a vast array of
binary switches called “bits”.

The power of a computer comes from the speed and sophistication with
which it manipulates these bits to accomplish higher tasks. The first step
towards these higher goals is to organize these bits in such a way that
they can describe things more complicated than “off” or “on”.

Different numbers of bits are used to make up different building blocks of
data. They are most commonly described as follows:

 Four bits = Nibble
 Eight bits = Byte
 Sixteen bits = Word
 Thirty two bits = Long

One bit has two possible states, on or off. Every time a bit is added,
the possible number of states is doubled. Two bits have four possible
states. They are as follows:

 00 off-off
 01 off-on
 10 on-off
 11 on-on

 A nibble has 16 possible states. A byte has 256 and a Long has billions
of possible combinations.

Because a byte of information has 256 possible states, it can reflect a
number from zero to 255. This is elegantly done by assigning each bit
a value of twice the one before it, starting with one. Each bit value
becomes as follows:

 Bit Value
 0 1
 1 2
 2 4
 3 8
 4 16
 5 32
 6 64
 7 128

APPENDIX A: UNDERSTANDING BINARY DATA

96

APPENDIX A: UNDERSTANDING BINARY DATA

If all their values are added together the result is 255. By leaving particular
bits out any sum between zero and 255 can be created. Look at the following
example bytes and their decimal values:

 Byte Value

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1
 0 0 0 0 0 0 1 0 2
 0 0 0 0 0 0 1 1 3
 0 0 0 1 0 0 0 0 16
 1 0 0 0 0 0 0 0 128
 1 0 0 0 0 0 0 1 129
 1 1 1 1 1 1 1 1 255

Consider the following two bytes of information:

 Byte Value

 0 0 1 1 1 1 0 0 60
 0 0 0 1 1 1 1 0 30

To make use of the limited memory available with micro controllers that
can fit into a SmartMotor, there are occasions where every bit is used.
One example is the status byte. A single value can be uploaded from a
SmartMotor and have coded into it, in binary, eight or sixteen independent
bits of information.

The following is the status byte and its coded information:

 Name Description Bit Value

 Bo Motor OFF 7 128
 Bh Excessive temp. 6 64
 Be Excessive pos. err. 5 32
 Bw Wraparound 4 16
 Bi Index reportable 3 8
 Bm Real time neg. lim. 2 4
 Bp Real time pos. lim. 1 2
 Bt Trajectory going 0 1

There are two useful mathematical operators that work on binary data, the “&”
(and) and the ”|” (or). The “&” compares two bytes, words or longs and looks
for what they have in common. The resulting data has ones only where there
were ones in both the first byte and the second. The “|” looks for a one in the
same location of either the first data field or the second. Both functions are
illustrated in the following example:

 A B A&B A|B

 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 1

97

APPENDIX A: UNDERSTANDING BINARY DATA

Knowing how the binary data works will enable shorter and faster code to be
written. The following are two code examples that are looking to see if both
limit inputs are high. One does this without taking advantage of the binary
operator while the second shows how using the binary operator makes the
code shorter, and therefor faster.
Example 1:

 IF Bm ‘look for - lim high
 IF Bp ‘loof for + lim high
 GOSUB100 ‘handle it
 ENDIF
 ENDIF

Example 2:

 IF S&6 ‘look at both lim
 GOSUB100 ‘handle it
 ENDIF

Both examples will execute subroutine 100 if both limit inputs are high. By
“anding” the status byte (S) by six, the second routine filters out all of the other
status information. If either limit is high, then the result will be non-zero and
subroutine 100 will execute. Example two uses much less code than example
one and will run much faster as a part of a larger program loop.

The next two examples show how the use of the “|” operator can improve
program size and execution speed:

Example 3:

 IF UAI ‘look for input A
 GOSUB200 ‘handle it
 ENDIF
 IF UBI ‘look for input B
 GOSUB200 ‘handle it
 ENDIF

Example 4:

 IF UAI|UBI ‘look at both A,B
 GOSUB200 ‘handle it
 ENDIF
Both examples 3 and 4 accomplish the same task with different levels of
efficiency.

98

99

ASCIIIS an acronym for American Standard Code for Information
Interchange. It refers to the convention established to relate characters,
symbols and functions to binary data. If a SmartMotor is asked its position
over the RS-232 link, and it is at position 1, it will not return a byte of value
one, but instead will return the ASCII code for 1 which is binary value 49.
That is why it appears on a terminal screen as the numeral 1.

The ASCII character set is as follows:

APPENDIX B: THE ASCII CHARACTER SET

0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
10 LF
11 VT
12 FF
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FC
29 GS
30 RS
31 US

32 SP
33 !
34 “
35 #
36 $
37 %
38 &
39 ‘
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _

96 ’
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 Del

100

APPENDIX C: USER ASSIGNED VARIABLES MEMORY MAP

101

APPENDIX C: USER ASSIGNED VARIABLES MEMORY MAP

102

103

 ! (exclamation point)

 (space) Single space between user variables

 @P Current position

 @PE Current position error

 @V Current velocity

 a . . . z User variables

 aa . . . zzz More user variables

 al[index] Array variable 32 bit

 aw[index] Array variable 16 bit

 ab[index] Array variable 8 bit

 A=exp Set acceleration

 ADDR Motor’s self address variable

 AIN{port}{channel} Assign input byte from module

 AMPS=expression Set PWM drive signal limit

 AOUT{port}{expression} Output analog byte to module

 Ba Over current status bit

 Bb Parity error status bit

 Bc Communication overflow status bit

 Bd Math overflow status bit

 Be Excessive position error status bit

 Bf Communications framing error status bit

 Bh Excessive temperature status bit

 Bi Index captured status bit

 Bk EEPROM data integrity status bit

 Bl Historical left limit status bit

 Bm Real time left limit status bit

 Bo Motor off status bit

 Bp Real time right limit status bit

 Br Historical right limit status bit

APPENDIX D: SMARTMOTOR COMMANDS

104

 Bs Syntax error status bit

 Bt Trajectory in progress status bit

 Bu Array index error status bit

 Bv EEPROM locked state (obsolete)

 Bw Encoder wrap around status bit

 Bx Real time index inptut status bit

 BASE Cam encoder count cycle length

 BAUD Host communications control

 BRKENG Brake engage

 BRKRLS Brake release

 BRKSRV Brake without servo

 BRKTRJ Brake without trajectory

 BREAK Program execution flow control

 C# Program subroutine label

 CCHN{type}{channel} Close communications channel

 CHN0 RS-232 communications error flags

 CHN1 RS-485 communications error flags

 CLK Hardware clock variable

 CTR Second encoder/step and direction counter

 D=exp Set relative distance

 DEFAULT Switch-case structure element

 DIN{port}{channel} Input byte from module

 DOUT{port}{channel}{expression}
 Output byte to module

 E=expression Set allowable position error

 ECHO Echo input data back out main channel

 ECHO_OFF Stop echo main channel

 ECHO1 Echo input data back out second channel

 ECHO1_OFF Stop echo second channel

 ELSE If structure element

 ENC0 Select internal encoder for servo

APPENDIX D: SMARTMOTOR COMMANDS

105

APPENDIX D: SMARTMOTOR COMMANDS

 ENC1 Select external encoder for servo

 END End program

 ENDIF End IF statement

 EPTR=expression Set data EEPROM pointer

 ES400 Slow data EEPROM read/write speed

 ES1000 Increase data EEPROM read/write speed

 F Load filter

 F=expression Special functions control

 G Start motion (GO)

 GETCHR Get character from main comm channel

 GETCHR1 Get character from second comm channel

 GOSUB# Call a subroutine

 GOTO# Branch program execution to a label

 I (capital i) Hardware index position variable

 IF expression Conditional test

 KA=expression PID acceleration feed-forward

 KD=expression PID derivative compensation

 KG=expression PID gravity compensation

 KGOFF PID gravity mode off

 KGON PID gravity mode on

 KI=expression PID integral compensation

 KL=expression PID integral limit

 KP=expression PID proportional compensation

 KS=expression PID derivative term sample rate

 KV=expression PID velocity feed forward

 LEN Main comm chnl buffer fill level, data mode

 LEN1 Second comm chnl buffer fill level, data mode

 LIMD Enable directional constraints on limit inputs

 LIMH Limit active high

 LIML Limit active low

106

 LIMN Restore non-directional limits

 LOAD Initiate program download to motor

 LOOP While structure element

 MC Enable cam mode

 MC2 Enable cam mode with position scaled x2

 MC4 Enable cam mode with position scaled x4

 MC8 Enable cam mode with position scaled x8

 MD Enable contouring mode

 MD50 Enable drive mode

 MF0 Set mode follow for variable only

 MF1 Configure follow hardware for x1 scaling

 MF2 Configure follow hardware for x2 scaling

 MF4 Configure follow hardware for x4 scaling

 MFDIV Mode follow with ratio divisor

 MFMUL Mode follow with ratio multiplier

 MFR Initiate mode follow ratio calculation

 MP Enable position mode

 MS Enable step and direction input mode

 MS0 Configure step and direction for variable only

 MSR Initiate mode step ratio calculation

 MT Enable torque mode

 MV Enable velocity mode

 O=expression Set origin

 OCHN Open main communications channel

 OFF Stop servoing the motor

 P=expression Set position

 PID1 Restore PID sample rate to default

 PID2 Divide PID sample rate by two

 PID4 Divide PID sample rate by four

 PID8 Divide PID sample rate by eight

APPENDIX D: SMARTMOTOR COMMANDS

107

 PRINT{expression} Print data to main comm channel

 PRINT1{expression} Print data to second comm channel

 PRINT{port}{expression} Print data to AniLink peripheral

 Q Report status in contouring mode

 Ra . . . Rz Report variables

 Raa . . . Rzz Report variables

 Raaa . . . Rzzz Report variables

 Rab[index] Report byte array variables (8-bit)

 Ral[index] Report long array variables (32-bit)

 Raw[index] Report word array variables (16-bit)

 RA Report acceleration

 RAIN{expression}{input} Report value from analog AniLink card

 RAMPS Report assigned max. drive PWM limit

 RBa Report over current status

 RBb Report parity error status

 RBc Report communications error status

 RBd Report user math overflow status

 RBe Report position error status

 RBf Report communications framing error status

 RBh Report overheat status

 RBi Report index status

 RBk Report EEPROM read/write status

 RBl Report historical left limit status

 RBm Report negative limit status

 RBo Report motor off status

 RBp Report positive limit status

 RBr Report historical right limit status

 RBs Report program scan status

 RBt Report trajectory status

 RBu Report user array index status

APPENDIX D: SMARTMOTOR COMMANDS

108

RBw Report wrap around status

 RBx Report hardware indexinput level

 RCHN Report combined communications status

 RCHN0 Report RS-232 communications status

 RCHN1 Report RS-485 communications status

 RCS Report RS-232 communications check sum

 RCS1 Report RS-485 communications check sum

 RCTR Report secondary counter

 RD Return buffered move distance value

 RDIN{port}{channel} Report value from digital AniLink card

 RE Report buffered maximum position error

 RES=expression High resolution encoder control

 RETURN Return from subroutine

 RI Report last stored index position

 RKA Report buffered acceleration feed forward coef.

 RKD Report buffered derivative coefficient

 RKG Report buffered gravity coefficient

 RKI Report buffered integral coefficient

 RKL Report buffered integral limit

 RKP Report buffered proportional coefficient

 RKS Report buffered sampling interval

 RKV Report buffered velocity feed forward coefficient

 RMODE Report current mode of operation

 RP Report present position

 RPE Report present position error

 RPW Report position and status

 RS Report status byte

 RT Report current requested torque

 RUN Execute stored program

 RUN? Override automatic program execution

APPENDIX D: SMARTMOTOR COMMANDS

109

 RV Report velocity

 RW Report status word

 S (as command) Stop move in progress abruptly

 SADDR# Set motor to new address

 SILENT Suppress PRINT messages main channel

 SILENT1 Suppress PRINT messages second channel

 SIZE=expression Number of data entries in cam table

 SLEEP Initiate sleep mode main channel

 SLEEP1 Initiate sleep mode second channel

 STACK Reset nesting stack tracking

 SWITCH expression Program execution control

 T=expression Assign torque value in torque mode

 TALK Enable PRINT messages on main channel

 TALK1 Enable PRINT messages on main channel

 TEMP Temperature variable

 TH Sets high temperature set point

 THD Sets temperature fault delay

 TWAIT Pause program during a move

 UA=expression Set I/O A output

 UAA I/O A analog input value (0 to 1024)

 UAI (as command) Set I/O A to input

 UAI (as input value) I/O A input value variable

 UAO (as command) Set I/O A to output

 UB=expression Set I/O B output

 UBA I/O B analog input value (0 to 1024)

 UBI (as command) Set I/O B to input

 UBI (as input value) I/O B input value variable

 UBO (as command) Set I/O B to output

 UC=expression Set I/O C output

 UCA I/O C analog input value (0 to 1024)

APPENDIX D: SMARTMOTOR COMMANDS

110

 UCI (as command) Set I/O C to input

 UCI (as input value) I/O C input value variable

 UCO (as command) Set I/O C to output

 UCP (as command) Set I/O C to be a right limit input

 UD=expression Set I/O D output

 UDA I/O D analog input value (0 to 1024)

 UDI (as command) Set I/O D to input

 UDI (as input value) I/O D input value variable

 UDM (as command) Set I/O D to be a left limit input

 UDO (as command) Set I/O D to output

 UE=expression Set I/O E output

 UEA I/O E analog input value (0 to 1024)

 UEI (as command) Set I/O E to input

 UEI (as input value) I/O E input value variable

 UEO (as command) Set I/O E to output

 UF=expression Set I/O F output

 UFA I/O F analog input value (0 to 1024)

 UFI (as command) Set I/O F to input

 UFI (as input value) I/O F input value variable

 UFO (as command) Set I/O F to output

 UG=expression Set I/O G output

 UGA I/O G analog input value (0 to 1024)

 UGA (as command) Set I/O G to G synchronous function

 UGI (as command) Set I/O G to input

 UGI (as input value) I/O G input value variable

 UGO (as command) Set I/O G to output

 UIA Read Current (Amps = UIA/100)

 UJA Read Voltage (Volts = UJA/10)

 UP Upload user EEPROM program contents

 UPLOAD Upload user EEPROM readable program

APPENDIX D: SMARTMOTOR COMMANDS

111

 V=expression Set maximum permitted velocity

 VLD Sequentially load variables from data EEPROM

 VST Sequentially store variables to data EEPROM

 WAIT=expression Suspends program for number of PID samples

 WAKE Terminate sleep mode main channel

 WAKE1 Terminate sleep mode second channel

 WHILE expression Conditional program flow command

 X Slow motor motion to stop

 Z Total system reset

 Za Reset current limit violation latch bit

 Zb Reset serial data parity violation latch bit

 Zc Reset communications buffer overflow latch bit

 Zd Reset math overflow violation latch bit

 Zf Reset serial comm framing error latch bit

 Zl Reset historical left limit latch bit

 Zr Reset historical right limit latch bit

 Zs Reset command scan error latch bit

 Zu Reset user array index access latch bit

 Zw Reset encoder wrap around event latch bit

 ZS Reset system latches to power-up state

APPENDIX D: SMARTMOTOR COMMANDS

112

APPENDIX D: SMARTMOTOR COMMANDS

113

APPENDIX E: DOWNLOADING THE SOFTWARE

The SMI software is a free down-
load from Animatics' web site. The
user still must have the proper
cable(s) and power source for the
SmartMotor being tested. Every
SmartMotor has an ASCII inter-
preter built in so technically, it is
possible to talk to the motor without
the SMI software.

To download the software go to our
web site (www.smartmotor.com, see
right) and click on the Technical
Support option on the top right side
of the Animatics screen.

In the middle of the second screen
Technical Support, click on SMI
downloads.

The third screen is legalese con-
cerning how the software is used. I
Agree must be selected before the
software can be downloaded.

The next screen (below) should be
File Download. Make sure Save
file to disk is selected and click
OK.

The Save As screen (below) should
now be on screen. The small data
window at the top of the screen,
Save In:, should have a default
folder already selected (possibly
TEMP as it is here). Use this
window to change drives. In the
middle of the Save As screen is a
large field with a list of files and fold-
ers. From here the Save In: folder
can be changed by double clicking
on a different folder or right clicking
in an empty portion of the field and
selecting New then Folder from the
new menus and entering a different
name. After the new folder has
been created, double click on it to
select it and continue on.

WEB: www.smartmotor.com • PHONE: 408•748•8721 • FAX: 408•748•8725

SmartMotor web
site opening screen

SmartMotor web
site Technical
Support screen

Windows' File
Download screen

Windows' Save As
screen

114

At the bottom of the Save As screen are two smaller data windows. The first
window (File name:) is where the file can be renamed (don’t change the .exe
extension or the file won’t work). Make sure the bottom window (Save as type:)
has Application entered and then click on Save.

The last screen is the file download progress window. When it's finished the
software can be installed. If the Close this dialog box when download
complete check box is checked the window will close when the file has
finished downloading.

APPENDIX E: DOWNLOADING THE SOFTWARE

115

The latest version of the SMI
software is available at
www.smartmotor.com.

If there are any Window’s pro-
grams running, close them before
installing the SMI software.

If the SMI software is being
installed from the SmartMotor CD,
insert the CD into the drive. The
SMI installation program should
automatically start. If not, run
“setup.exe” from the root direc-
tory of the CD.

If the SMI software is being installed from the downloaded program run
“SMIsetup.exe” from the directory the software was downloaded to.

Above, is the installation program's opening screen. Press the Next button
to go to the next step.

License Agreement

This screen is the license agree-
ment.

Read it carefully and if the terms
are agreeable, click the Yes button
to go on. If the No button is
selected, the installation program
will close and the software will not
be installed. The terms must be
agreed to before the softwate can
be installed.

Type of installation

There are three types of installa-
tion:

Typical: This is the recom-
mended option for most users. It
installs all the common features
of the SMI software.

Compact: This option installs the
minimum required features. Since
the typical installation uses very
little hard disk space, this option
isn't recommended.

The SMI installation
setup window

License agreement
window

Type of installation
dialog window.

APPENDIX F:
SCREEN BY SCREEN SMI SOFTWARE INSTALLATION

116

Custom: Select this option to choose only the features to be installed. If the
SMI software needs to be installed in a directory other than the default directory
shown in Destination Directory window, click the Browse button and select a
different directory.

Click the Next button to go to the next step.

APPENDIX F:
SCREEN BY SCREEN SMI SOFTWARE INSTALLATION

The confirmation
window

The Finish dialog
window

The confirmation
window

This window gives the user
an opportunity to review the
settings before copying the
files. If anything needs to be
changed click on the Back
button to go to the desired
window and change the set-
tings. Click the Next button to
begin copying files.

The Finish window

When the files are done copy-
ing, the final window (right)
will be onscreen.

There are two choices in this
window, Yes, I want to restart
my computer now and No,
I will restart my computer
later. The computer must be
restarted before the SMI soft-
ware can be used. After the
choice has been made, click
the Finish button

SmartMotor Connections

Before starting the SMI software make sure that the SmartMotor power and
communication cables are properly connected.

117

APPENDIX G: MOTOR SPECIFICATIONS SM1720

Many free-wheeling
vertical applications
require a SHUNT to
protect the SmartMotor
from over voltage
resulting from back-
drive to the supply,
especially if the supply
is already very close
to the SmartMotor's
48VDC input voltage
limit.

Multiple axis applications enduring high current spikes
should consider using Isolated RS-485 adapters. Order
RS485-ISO for each motor and an RS232485 for the
host end. Smaller motors such as the SM1720 with
reasonably smooth or soft accelerations work very well
in a simple RS-232 daisy chain.

118

SM2315D APPENDIX G: MOTOR SPECIFICATIONS

The SM2315 has two
features that set apart
from other SmartMotors.
One, is the 0.250" hole
in the back of the shaft.
This hole is designed
for a press fit with
standard, under size 1/4
inch shafting and greatly
facilitates customer rear
shaft additions and
modifications (PLEASE
BE SURE NOT TO
PRESS AGAINST THE
BEARINGS).

The second unique
feature is an interior
electronics expansion
bay located just inside
the back cover. This
additional and internally
connectorized space is
designed to facilitate the
addition of custom
electronics. Consult the
factory for more
information on how to
take advantage of this
unique feature in your
application.

119

APPENDIX G: MOTOR SPECIFICATIONS SM2337D
SM2337D, SM2337DT

Many free-
wheeling vertical
applications
require a SHUNT
to protect the
SmartMotor from
over voltage
resulting from
back-drive to the
supply, especially
if the supply is
already very
close to the
SmartMotor's
48VDC input
voltage limit.

Multiple axis applications enduring high current spikes should
consider using Isolated RS-485 adapters. Order RS485-ISO
for each motor and an RS232485 for the host end. Smaller
motors such as the SM23XX Series with reasonably smooth
or soft accelerations work very well in a simple RS-232 daisy
chain.

120

SM2300D APPENDIX G: MOTOR SPECIFICATIONS
 SM2310, SM2320, SM2330, SM2340

Many vertical applications require a SHUNT to
protect the SmartMotor from over voltage resulting
from back-drive to the supply, especially if the supply
is already very close to the SmartMotor's 48VDC
input voltage limit.

Multiple axis applications enduring
high current spikes should consider
using Isolated RS-485 adapters.
Order RS485-ISO for each motor and
an RS232485 for the host end.

121

APPENDIX G: MOTOR SPECIFICATIONS SM3400D
SM3410, SM3420, SM3430, SM3440, SM3450

122

SM4200 APPENDIX G: MOTOR SPECIFICATIONS
 SM4210, SM4220, SM4230

SmartMotors are designed to operate
within ambient temperatures ranging
between zero and 70 degrees
Centegrade. The ratings are for
standard room temperature.
Continuous torque output derates to
zero as the ambient temperature
spans from room temperature to 70C.

If the SmartMotor is working hard it
will heat up, sometimes so much so
as to be too hot to touch. That is
normal. SmartMotor MTBF figures are
calculated assuming the electronics
are at the maximum temperature of
70C (worst case). These theoretical
calculations put the SmartMotor MTBF
beyond 100,000 hours. Actual field
data, now normalized over thousands
of installations, shows real SmartMotor
average life to exceed the calculated
estimates.

123

APPENDIX G: MOTOR SPECIFICATIONS SM5600
SM5610, SM5620, SM5630

