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Programming: P.I.D. Filter Control:
 
The SmartMotor includes a very high quality, high performance brushless D.C. ServoMotor.  It has a rotor with extremely high power
rare earth magnets and a stator (the outside, stationary part) that is a densely wound multi-slotted electro-magnet.
 
Controlling the position of a Brushless D.C. servo’s rotor with only the electro-magnetism to use as a lever is like pulling a sled with
a rubber band.  Accurate control would seem impossible.
 
The magic that makes it happen is found in the “P.I.D. filter”.  The “P” stands for “Proportional”, the “I” for “Integral” and the “D” for
“Derivative”.  These are the three fundamental coefficients to a mathematical algorithm that intelligently recalculates the power to give
to the motor about 4,000 times per second.  The input to the P.I.D. filter is the instantaneous actual position minus the desired position,
be it at rest, or part of an ongoing trajectory.  This difference is called the “error”.
 
The proportional term of the filter creates a simple spring constant.  The further the shaft is rotated away from its target position, the
more power is delivered to return it.  With this as the only term the motor shaft would respond just as the end of a spring would if you
grabbed it and twisted. Just like a spring, if you twist it and then let go it will vibrate wildly.  This kind of vibration is  hazardous to 
mechanisms so what gets added is a shock absorber, the derivative term.  If you slowly sat down on the fender of a car it would dip
down because of your weight, based on the constant of the car’s spring.  You would not know if the shocks were good or bad.  If you
hooked your toes in the bumper, however, and jumped up and down you could quickly tell whether the shock absorbers were working.
That is because they are not activated by position.  They are activated by speed.  The derivative term steals power away as a function
of the rate of change of the overall filter output.  The term gets its name from the fact that the derivative of position is speed.  Electronically
stealing power based on the magnitude of the motor shafts vibration has the same effect as putting a shock absorber in the system, and
the algorithm never goes bad.
 
Even with those two terms a situation can arise that will cause the servo to leave its target and that is created by “dead weight”.  If a
constant torque is applied to the end of the shaft, the shaft will comply until the deflection causes the proportional term to rise to the
equivalent torque.  There is no speed so the derivative term has no effect.  As long as that torque is there, the motor’s shaft will be off
of its target. That is where the integral term comes in.  The integral of position is time, and the integral term mounts an apposing force

it back on target.  There is also a separate parameter that is used to limit the scope of what the integral term can do.
 
Each of these three parameters have their own scaling factor to taylor the overall performance of the filter to the specific load conditions
of any one particular application.  The scaling factors are as follows:
 

KP Proportional
KI Integral
KD Derivative
KL Integral Limit

 
Tuning the Filter:
 
The task of tuning the filter is complicated by the fact that the terms are so interdependent.  A change in one can shift the optimal
settings of the others.  The automatic utility relieves you of this aggravation, but you still may want to know how to tune a servo.
When tuning the motor it is useful to have the status monitor running.  This will allow you to monitor various bits of information that
will reflect the motors performance.
 

KP=exp Set Kp, proportional coeff.
KI=exp Set Ki, time-error coefficient
KD=exp Set Kd, damping coefficient
KL=exp Set Kl, time-error term limit
F Update PID filter

 
The main objective in tuning a servo is to get KP as high as possible, while maintaining stability.  The higher KP the stiffer the system



and the more under control it is.  A good start is to simply query what to begin with (RKP) and then start increasing it 10% to 20% at
a time.  It is a good idea to start with KI equal to zero.  Keep in mind that the new settings do not take effect until the ‘F’ command is
issued.  Each time you raise KP, try physically to destabilize the system, by bumping or twisting it.  Alternatively, you could have a
program loop cycling that invokes abrupt motions.  As long as the motor always settles to a quiet rest, you can keep raising KP.
 
As soon as you reach the limit, you need to rediscover the appropriate derivative compensation.  Move KD up and down until you locate
the position that gives you the quickest stability.  If KD is way too high, you will hear a grinding sound.  It is not really grinding, but it is a
sign that you will want to go the other way.  A good tune is not only stable, but reasonably quiet.  After optimizing KD, you may find that
you can raise KP a little more.  Keep going back and forth until you have exhausted all you can do to improve the stiffness of the system.
Then it is time to take a look at KI.
 
KI in most cases is used to compensate for friction.  Without it you will never get exactly on target.  Begin with KI equal to zero and KL
equal to 1000.  Move the motor off target and start increasing KI and KL.  Keep KL at least  ten times KI during this phase.
 
Continue to increase KI until the motor always reaches its target, and then once that happens add about 30% to KI and start bringing down

by about 30% as well.  You want the integral term to be strong enough to overcome friction, but you also want the limit to be set so that an
unruly amount of power will not be delivered if the mechanism were to jam or simply find itself against one of its ends of travel.
 

E=exp Set maximum position error
 
The difference between where the motor shaft is and where it is supposed to be is appropriately called the “error”.  The magnitude and sign
of the error is delivered to the motor in the form of torque, after it is put through the P.I.D. filter.  The higher the error is, the more out of
control the motor is.  It is therefore often useful to put a limit to the allowable error, after which time the motor will be turned off.  That is what
the ‘E’ command is for.  It defaults to 1000 encoder counts, but can be set from 1 to 30,000.
 

a P.I.D. loop through the execution of a motion trajectory are unpredictable, but there are some that can be predicted and further eliminated
preemptively.
 

KG=exp Set Kg, gravity offset term
KGOFF Kill Kg term during error
KGON Maintain Kg during error

 
The simplest of these is gravity.  Why burden the P.I.D. loop with the effects of gravity in a vertical 

load application, if it can simply be weeded
out.  If in a particular application, motion would occur with the power off due to gravity, a constant 

offset can be incorporated into the filter to
balance the system.  ‘KG’ is the term.  KG can range from -8388608 to 8388607.  To tune KG simply 

issue the ‘KGON’ command, while the
motor is not servoing, and make changes to KG until the load equally favors upward and downward 

motion.  If when there is a position error
you want the motor to drop the load, then issue ‘KGOFF’.
 

KV=exp Set Kvff, velocity feed forward
 
Another predictable cause of position error is the natural latency of the P.I.D. loop itself.  At higher 

speeds, because the calculation takes
a finite amount of time, the result is somewhat “old news”.  The higher the speed, the more the actual 

motor position will slightly lag the
trajectory calculated position.  This can be programmed out with the ‘KV’ term.  KV can range from 

zero to 65,535.  Typical values range
in the low hundreds.  To tune KV simply run the motor at a constant speed, if  the application will 

allow, and increase KV until the error gets
reduced to near zero and stays there.
 



KA=exp Set Kaff, acceleration feed forward
 
Force equals mass times acceleration.  If the SmartMotor is accelerating a mass, it will be exerting a 

force during that acceleration.  This
force will disappear immediately upon reaching the cruising speed.  This momentary torque during 

acceleration is also predictable and
need not aggravate the P.I.D. filter.  It’s effects can be programmed out with the ‘KA’ term.  It is a little 

more difficult to tune ‘KA’, especially
with hardware attached.  The objective, however, is to arrive at a value that will close the position 

error during the acceleration and deceleration
phases.  It is better to tune ‘KA’ with ‘KI’ set to zero because ‘KI’ will address this constant force in 

another way.  It is best to have ‘KA’ address
100% of the forces due to acceleration, and leave the KI term to adjust for friction.
 

KS=exp Set Ks, dampening sample rate
 
You can reduce the sampling rate of the derivative term, ‘KD’, with the ‘KS’ term.  This can 

sometimes add stability to very high inertial loads.
Useful values of KS range from 1 (the default) to 20.  Results will vary from application to application.
 

PID1 Set normal PID update rate
PID2 Divide normal PID update rate by 2
PID4 Divide normal PID update rate by 4
PID8 Divide normal PID update rate by 8

 
The trajectory and P.I.D. filter calculations occur within the SmartMotor 4069 times per second.  That 

is faster than is necessary for vary 
good control, especially with the larger motors.  A reduction in the P.I.D. rate will result in an increase 

in the SmartMotor application program
execution rate.  The ‘PID2’ command will divide the P.I.D. rate by two, and the others even more.
 
If you do lower the P.I.D. rate, keep in mind that this is the “sample” rate that is the basis for velocity 

values, acceleration values, P.I.D. 
coefficients and wait times.  If you cut the rate in half, expect to do the following to keep all else the 

same:
 

Halve all motor constants
Halve wait times
Double velocity
Increase acceleration by a factor of four.


