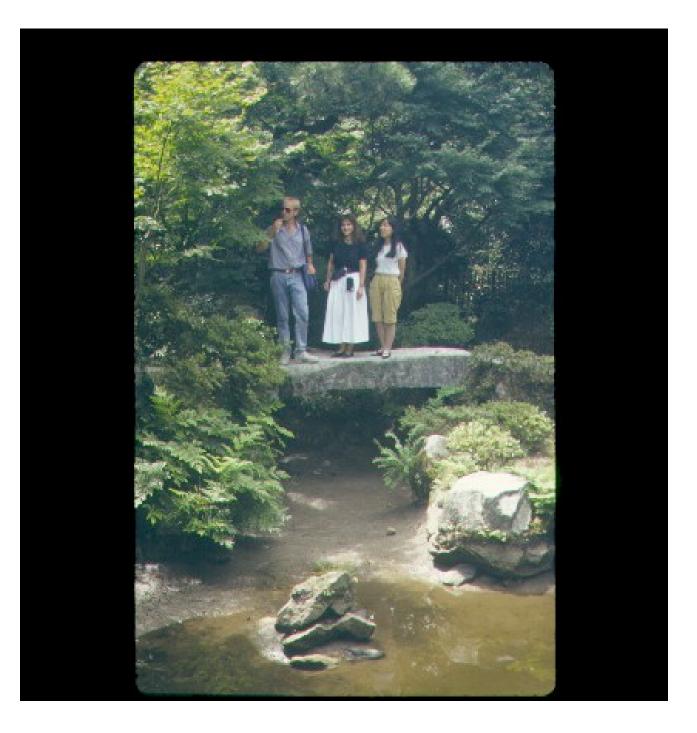
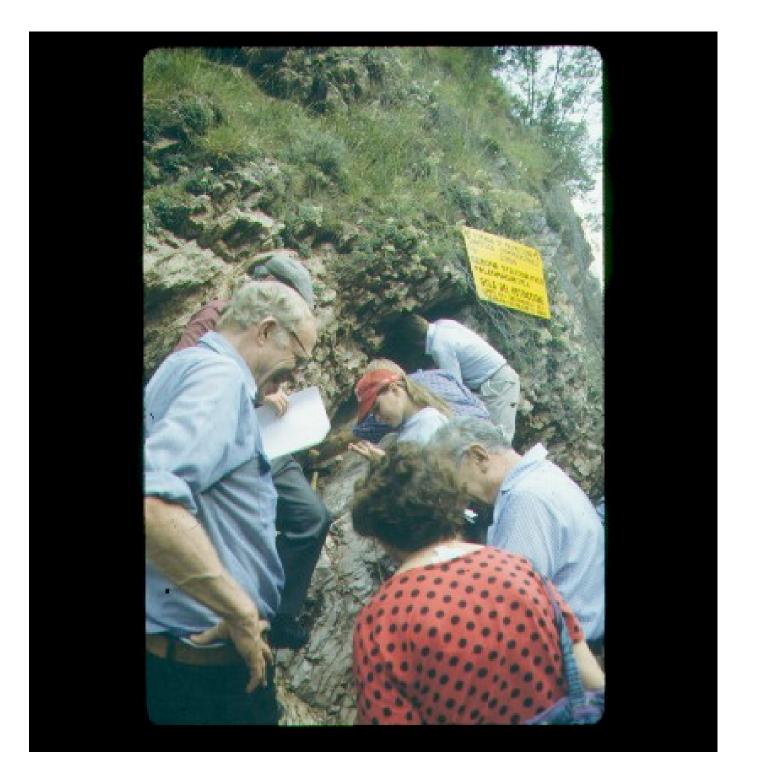
CATASTROPHIC DISRUPTION 2007

CD Workshops: Why??


SPECIFIC GOALS

 Cratering community had well developed scaling laws; extend to CD.


• Define needed experiments.

• Bring in meteoriticists, observers etc.

PROGRESS TOWARD CD GOALS

SCALING AND MODELING: Very active community now; good progress.
EXPERIMENTS: Steady level of experiments; validation of scaling (Housen). Need tests for porous bodies.

• OBSERVERS ETC: Much broader range of participants.

A FEW MEETING HIGHLIGHTS

- Using spectra to identify families (Bus, KB family).
- Dynamical chronometry (Bottke et al.
- Binary Stability States (Scheeres).
- Expanding power of computers and codes.

A FEW MEETING HIGHLIGHTS

- The first confirmed rubble pile (Cheng et al, O'Brien). Diversity.
- Vast increase in data on binaries, physical properties.
- Asteroid tomography **REALLY** learn about rubble pile.
- Power of Arecibo for asteroid studies

EXPERIMENTS

Interest in porous, layered and ice targets.

 BUT, a major purpose of lab experiments is to validate codes.
 We need to do a better job of measuring material needed by the hydrocodes.

HYDROCODES AND SCALING LAWS

- Powerful tools for understanding collisional and dynamical processes.
- Caveat pointed out by Benz

• Comprehensive collisional outcome algorithm.

ASTEROID SCIENCE

Much progess in understanding relevant physics; eg, Yark, YORP.
Vast increase in data, with the real

deluge about to begin with Pan-STAARS.

• New paradigms for asteroid evolution.

SO, WHAT WILL CD08 BRING?

A million or more known asteroids.
Colors for several hundred thousand asteroids.

 Spectra and light curves for many tens of thousands asteroids.

SO, WHAT WILL CD08 BRING?

 Looking at asteroids by mass instead of numbers; we already have a variety of data on >95% of the mass of the asteroid belt. So, is adding data on a few more % going to provide breakthroughs?

SO, WHAT WILL CD08 BRING?

 Really determine the sizefrequency distribution of small asteroids.

- Expand number of families.
- See collisions in near "real time".

UNRESOLVED PROBLEMS

•The Vesta-Psyche dilemma.

•The "Great Dunite Shortage" and where are the iron parent bodies?

• Why are there no differentiated families?

 Does seismic shaking work on rubble piles?

UNRESOLVED PROBLEMS (CONT'D)

 What is the distribution of asteroid structures for different sizes competent, fractured, rubble piles?

• What is the strength-gravity transition size for different structures?

"We know a lot less about asteroids than we did ten years ago."

(But that means we will all keep busy for some time..)

Thank you..

Holsapple SRGM Model"

The Equations:

Hoek Brown (Static Only)	Strain-Rate Geological Model
$\boxed{\frac{\sigma_1 - \sigma_3}{\sigma_c} = \left(m_b \frac{\sigma_3}{\sigma_c} + s\right)^a}$	$\frac{Y_{nf}}{\sigma_c} = A \left(\frac{P}{\sigma_c} - \frac{P_T}{\sigma_c} (\dot{\varepsilon}^p)^{\alpha}\right)^n f(\varepsilon^p) h[\bar{T}(\rho)]$ Rate effect
$m_{b} = m_{i}e^{\frac{GSI-100}{28-14D}}$ $\frac{GSI-100}{9-3D}$	$\frac{Y_f}{\sigma_c} = B\left(\frac{P}{\sigma_c}\right)^p f(\varepsilon^p)h\left[\overline{T}(\rho)\right]$ Thermo effect
$s = e^{\overline{9-3D}}$ $a = 0.5 + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$	$G = \rho c^{2} \left(\frac{3(1-2\nu)}{2(1+\nu)} \right) h[\overline{T}(\rho)] \left(1 - \frac{D}{2} \right)$ $Modulus degrades$ $Y = (1-D)Y_{nf} + DY_{f}$
	$\dot{D} = \frac{\dot{\varepsilon}^p}{\varepsilon_f^p}$ Damage Accumulation
(2 parameter, m _i , GSI)	$\varepsilon_{f}^{p} = D_{1} \left(\frac{P}{\sigma_{c}} - \frac{P_{T}}{\sigma_{c}} (\dot{\varepsilon}^{p})^{\alpha} \right)^{D_{2}} h[\bar{T}(\rho)]$ Failure plastic strain depends on pressure
	$h(\theta) = 1 - \left(\overline{\theta}\right)^{\beta}$ General melt effect
	$T_m = T_{mo} + \frac{\rho}{\rho_{HEL}} (T_{mh} - T_{mo})$
	$\overline{T}(\rho) = \frac{T - T_0}{T_m - T_0}$

" PROBLEMS WORTHY OF ATTACK, PROVE THEIR WORTH BY HITTING BACK"

Piet Hein, Grooks