

<u>Current Spex row timing:</u> Guidedog's FASTMODE is 125 ns TimeSlices

GuideDog's default is 12 slowcnt or 450 ns TimeSlices

When sampling Column, we used 35 TS: 9 TS before converts, and 3 between PF1/PF2 toggle.

Can we used slowcnt with the SGIR pattern generator? Yes, based on 35 TimeSlice, we can do this:

USING SG	IR SLOW	CNT: $ns = 40 +$	(20*slowcn	t)			
Slowcnt	slowcnt_n	s Pattern	Fram	e_Rate ms			
4	120	4200		68.8128			
20	440	15400	2	52.3136			

Clock the row and convert. Aladdin we group 2 column in a pattern generator, 16 pixels (8channell * 2):

			J	•			U			`	,		
		0	1	2	3	4	5	6	7	8			
PG3	b0												
	b1												
	b2 PFS												
PG4	b0 - PF1												
	b1- PF2												
	b2 - vclamp												
	b3 -ADCTRIG												
Spex TS		3	9	1	4	3	9	1	4	1	35		
To get sim	nilar Timing we	can d	o this:										
SGIR		3	9	2	2	3	9	2	2	1	33		
		Yello	w bloc	k timi	ing de	termir	ne by	ADC I	param	eters,	ı		
		This e	This example uses 2 or 220 ns (2 samples, 1 channel)										

Yellow assumes 1 ch, 2 sample or 110ns*2 = 220. That's equivalent to 2 120 ns timeslices (240ns)

That means, slowcnt and numsample defines the timing.

Clock a row with no converts: to clock quickly over row (used for subarrays)

		0	1	2	3	4	5	6	7	8	
PG3	b0										
	b1										
	b2 PFS										
PG4	b0 - PF1										
	b1- PF2										
	b2 - vclamp										
	b3 -ADCTRIG										
Spex TS		4	4			4	4			0	16
To get sim	nilar Timing we	can d	o this	:							
SGIR		4	2	1	1	4	2	1	1	1	17

To initialize fast shift register, we need to reprogram PG3 / 4. This will happen 1 once evey row

											-
	b2 PFS										
PG4	b0 - PF1										
	b1- PF2										
	b2 - vclamp										
	b3 -ADCTRIG										
Spex TS		4	4	4	4	4	0	0	0	0	20
To get sim	ilar Timing in S	GIR v	ve car	า do tl	nis:						
SGIR		4	4	4	4	1	1	1	1	1	21

Clocking Rows

There are 4 signal used to control the Row MUX: PSS, PS1, PS2, PSOE

PS1, and PS2 are used to march the address bit on the MUX. This address bit address a row-pair: AB or CD.

Then the PSOE is used to select one of the row pairs.

It is best to used DIGOUT for the row mux signal. (rather that the parallel pattern generator)

PSS								
PS1								
PS2								
PSOE								
						-	Total	
spex TS	1	4	4	4	4		17	
SGIR TS	1	4	4	4	4			

Here we intialize the row mux, by toggling SS(slow sync) and the S1. SGIR will do the same using DIGIOUT and Delays.

	Row	A		Row	В	Row	С	Row	D				
PSS													
PS1													
PS2													
PSOE													
			*		*		*		*	* = columr	ns are reado	out here.	
spex TS	4	18		18		18		18		Spex used	18 TS bec	ause the	
										fast MUX a			
SGIR TS	4	8		8		8		8		Can be as fast as 4 TS.			

The above table show how we can used DIGOUT to march the Row Address Bit down the Row (slow) MUX. For SGIR we will not do CDS mode (just fowler sampling), so the CDS scheme will not be illustrated, but can easily be accomplished.

Vrstr					
vrowon					
Spex TS	2	16	2		

Just for completeness, the Vrstr, and vrowon are used to reset the pixels in the row pair during CDS mode. The TS used in spex is displayed here.