Overview

Intelligent servo controlled systems are often used to replace mechanisms driven purely via mechanical gearing. Use of an electronic system allows precise position lock to be maintained at all times and gear ratios can be modified, at will, at the touch of a button, even on the fly. Even mechanical clutch systems can be emulated. Where a mechanical system may produce unpredictable results in terms of distances traveled during the engagement and disengagement of the clutch, an electronic system allows these to be precisely specified.

MintMT provides a simple to use **FOLLOW** keyword to allow axes to run at specified gear ratios with respect to a master axis. The **FOLLOW** keyword can be configured in a number of pre-determined modes, one of which allows clutching distances to be defined when changing following ratio (continuous or extended clutch mode). Phase adjustments to the axis, to allow product registration for example, whilst following is also possible using the MintMT **OFFSET** command.

The illustration on the right, shows the layout of a machine where this mode of following may prove useful:
Products are fed onto an Infeed Conveyor from the production line. The production line output is such that the gap between products is reasonably regular and is nominally 50% of the product length.

The Infeed Conveyor drives an encoder so that product position can be determined and tracked (this is connected to the master/auxiliary encoder input on the motion controller).

Two photoelectric sensors detect products as they approach the Paddle sweeping section of the machine. The sensor nearest the paddles operates as a ‘position latch’ input (fast input). This input latches the position of the Paddle axis, when the front edge of a product is detected, to enable registration of the Paddle to each product.

The second sensor is used to detect over-length products (e.g. two products joined together). This sensor is adjusted to suit product length such that if both sensors are activated simultaneously an over-length product must be present.

Directly in line with the Infeed Conveyor (behind the paddle’s line of sweep) is a backstop that doubles as a reject gate. Solenoid valves, controlled by motion controller digital outputs, are used to open/close the backstop so that over-length products can be rejected if required.

A BSM servomotor is used to drive the paddles. A mechanical coupling also allows a flighted conveyor to be driven by the same motor. This is designed so that one product sweep is associated with one product flight.

A proximity sensor allows the paddle axis to be homed on start-up or after an Emergency Stop.

As the paddle axis has to generally follow the Infeed Conveyor encoder, has to be able to adjust position for registration and stop and restart when required it is an ideal candidate for ‘Continuous Clutch Mode Following’.

Paddle/Sweep Axis

The general principle of operation for the Paddle axis (axis 0) is that the paddles must traverse one paddle pitch for each product that is received. This relationship can be described as encoder following. The follow ratio can be determined from the formula below:

\[\text{Follow ratio} = \frac{\text{paddle pitch}}{\text{product pitch}} \]

(where paddle pitch and product pitch are expressed in terms of quadrature encoder counts).

If the paddle pitch on our machine is 12000 counts and the product pitch (distance between lead edges of products) is 4000 counts then the follow ratio would be calculated as 3.

The distance between paddles is fixed and hence we set our ENCODERWRAP for this axis to match this distance (e.g. 12000).
Starting the paddles

When the machine first starts, the paddles have to be positioned so that:

a) a programmable number of products can initially be rejected through the reject gate

b) the paddles can be ramped up to speed to avoid mechanical shock and to reduce peak torque requirements

This position is treated as a zero position and the homing routine ensures that the axis starts motion from this point on power up or after an Emergency Stop by datuming to a switch and then performing an offset move.

Once the required number of products has been rejected, the paddles need to ramp up to the following ratio. This is possible by using an 'extended clutched mode' follow set via the MintMT code;

```
FOLLOWMODE(0) = _fmContinuous_Clutch
```

This mode allows the user to specify a master distance over which the slave axis will ramp up to the following ratio. This can be considered as a Flying Shear and MintMT even allows this motion to be specified as a FLY segment (instead of specifying the follow ratio) if desired.

The generic formula for flying shear segments is shown below:

```
FLY = ((Initial Ratio + Final Ratio)/2) * MASTERDISTANCE
```

When we start the paddles the initial gear ratio is 0 (they are stopped). Our final ratio is the follow ratio (3 in this example). Hence the formula above shows that the relationship between the slave distance traveled on startup (FLY) and the incoming product distance traveled during startup (MASTERDISTANCE) will be:

```
FLY = (3/2) * MASTERDISTANCE
```
Let us examine what we know so far:

The diagram above shows the starting position for the paddles (our encoder value will be zero at this point). The diagram also shows the position we want the paddles to be in when the incoming product reaches the backstop (the reject gate acts as a backstop when closed) – we have called this position the sweep position.

By measuring the distance (in encoder counts) between the starting position and the sweep position we can determine the required FLY segment for this axis. Substituting this into our previous formula will therefore allow us to calculate the corresponding MASTERDISTANCE:

\[
FLY = \frac{3}{2} \times MASTERDISTANCE
\]

\[
MASTERDISTANCE = FLY \times \frac{2}{3}
\]

If the distance traveled by the paddles to reach the sweep position is 3000 counts then the MASTERDISTANCE will be 2000 counts.

The start has to be triggered by detection of the incoming product (via a photo-electric sensor for example). We can therefore conclude that this sensor must be located at least 2000 conveyor axis counts away from the backstop.

In this example the Infeed Conveyor produces 20 counts per mm of linear travel – hence the sensor needs to be at least 100mm from the backstop.

It is important to consider the minimum product length at this stage. If the product length is such that more than one product will fit in the gap between the sensors and the backstops (remembering to include the nominal gap between products) then we have two options:

a) consider setting a new start distance to reduce the minimum sensor distance

b) continue with the existing setup – this however will then require the software to ‘buffer’ the product triggered signals (e.g. registration corrections) so that they can be applied to the correct paddle
For this example our product pitch was 4000 counts or 200mm. We can therefore conclude that the start position is acceptable at present.

However, lets assume that there is a mechanical restriction preventing the sensor from being mounted 100mm from the backstop. Instead it has to be mounted 140mm (or 2800 counts) from the backstop. This still meets the requirement that only one product fits between the sensor and the backstop, but now we cannot trigger the clutched follow or flying shear segment at the point of product detection. We can’t modify our starting flying shear segment as this will change the start position of the paddles and then products may not be able to pass through to the reject gate.

Instead we need to delay starting motion until the product reaches the point at which it is 100mm from the backstop.

This can be achieved with a second flying shear segment, where the MASTERDISTANCE is the product delay distance and the FLY segment is specified as zero (so the paddles do not move).

If we assign variable names to all of our system parameters then we can easily calculate these and code the logic to start the paddles when a product activates fast input 0.
Stopping the paddles

There are a number of conditions that may require the paddles to be stopped in a position where products can be rejected – i.e. the paddles have to be stopped in the position from which they first start (at an encoder value of 0).

By coding the stop logic in its own task we can ‘trigger’ the stop to occur from a number of different events or conditions throughout the application whilst the other tasks continue to execute. For example, we may request the paddles to stop if an over-length product is detected (if Fast input 0 and Input 1 are both on simultaneously).

As we are using an extended clutch mode follow we can use the FLY command to bring the paddle axis to a halt at a prescribed position. We have seen from the generic formula for flying shears that:

\[\text{FLY} = \frac{(\text{Initial Ratio} + \text{Final Ratio})}{2} \times \text{MASTERDISTANCE} \]
When the paddles are continually running (following) we have already seen that they are following the infeed conveyor axis at a follow ratio of 3 – hence 3 is our initial ratio. To bring the paddles to a halt the final ratio must be 0.

We can therefore conclude that the formula for our FLY segment and associated MASTERDISTANCE will be of the form:

\[\text{FLY} = \frac{3}{2} \times \text{MASTERDISTANCE} \]

If the paddle axis comes to a halt at the correct position the axis encoder value should read 0. Hence by capturing the current axis position when we start to stop the paddles we can derive the distance to be traveled during the stop – i.e. the FLY segment value.

For example:
If the encoder value for the paddles is read as 5000 when we initiate the stop (remembering that the axis has an ENCODERWRAP value of 12000) then the distance to travel to an encoder value of 0 is \((12000 - 5000) = 7000\) counts.

Once we have calculated the required FLY segment our generic formula can be used to calculate the associated MASTERDISTANCE.

Our MintMT paddle stop task should therefore appear as follows:

```plaintext
Task StopPaddles
    Dim nStopFly As Integer
    nStopFly = ENCODERWRAP(0) – ENCODER(0)
    MASTERDISTANCE(0) = nStopFly * 2/3
    FLY(0) = nStopFly
    GO(0)
End Task
```

Registering the paddles

Once the paddles are following the Infeed Conveyor at our nominal following ratio they should continually collect and sweep the incoming products through 90 degrees. However, the success of this process is dependent on the incoming products being regularly and accurately spaced. Any variation in the position of the incoming products will require that the paddles are either advanced or retarded to ensure successful sweeping still occurs.

This advancing or retarding of position (whilst still maintaining an overall follow ratio) can be considered as product registration.

MintMT allows product registration to be implemented with ease via the OFFSET keyword. The OFFSET keyword requires the user to specify a correction distance and MintMT automatically calculates the necessary speed adjustments to perform this correction.
We have already seen how EVENT FASTIN0 could be used to detect incoming products and start the paddles following if necessary. This same input can be used to capture the position of the running paddles and determine whether the position of the incoming product requires the paddles to be advanced or retarded.

Fast input 0 is configured to capture the position of the paddles (axis 0) via the following MintMT code segment:

```
FASTSELECT(0) = 0  // Axis 0 position is captured via fast input 0
FASTLATCHMODE(0) = 1  // Recapture position when FASTIN0 is complete
```

All that remains now is to calculate the registration requirements for each incoming product. Let’s have a look at what’s typically happening when a product is detected:

We already know from our work in starting the paddles that the incoming product will be 140mm (or 2800 counts of the Infeed Conveyor axis) away from the backstop when the product detection sensor detects it. We have also seen from this work that when the product reaches the backstop the paddles have traveled 3000 counts past their initial start position (where the initial start position has an encoder value of 0).

Once the paddles have completed their initial ramp up to speed they follow the Infeed Conveyor axis at a fixed ratio (3:1). We can therefore conclude that, if the paddles are in register, they should travel 3 * 2800 (8400) counts whilst the product travels to the backstop.
Therefore, the ideal position for the paddles when a product is detected is 8400 counts ‘back’ from encoder value 3000. The diagram below illustrates how we calculate the ideal register position from this information:

```
Sweep
Position

3000

Start
Position

0 / 12000

Ideal
Register
Position

6600

8400
```

Having calculated the ‘ideal’ position we can compare this against the position captured automatically by the fast interrupt every time a product is detected. The difference between the captured position and our ‘ideal’ position can then be applied as an OFFSET to ensure the paddles remain in register.

The following MintMT code segment illustrates how we can combine our start, stop and registration work into a single MintMT application:

```vbnet
Dim fFollowRatio As Float ' Final follow ratio for paddles
Dim nPaddleStartDistance As Integer ' Distance paddles move between start and sweep
Dim nDelayDistance As Integer ' Distance to wait before paddles start moving
Dim nRampDistance As Integer ' Distance over which paddles are ramped up to speed
Dim nPaddlesStopped As Integer = _True ' Flag used to decide whether to start paddles
Dim nIdealPos As Integer ' Paddle ideal position on detection of product
Const _nEyeToBack As Integer = 2800 ' Distance from product sensor to backstop

'Use flying shear segments when changing ratio
FOLLOWMODE(0) = _fmContinuous_Clutch

FASTSELECT(0) = 0 'Axis 0 position is captured via fast input 0
FASTLATCHMODE(0) = 1 'Recapture position when FASTIN0 is complete

'Calculate product distances for paddle start sequence
nRampDistance = Int((nPaddleStartDistance * 2) / fFollowRatio )
nDelayDistance = _nEyeToBack – nRampDistance

'Calculate ideal register position for paddles
nIdealPos = ENCODERWRAP(0) - ((_nEyeToBack * fFollowRatio) – nPaddleStartDistance)
```
Event Latch0 if using Nextmove e100

Main parent task
End Loop

Task StartPaddles
nPaddlesStopped = _False
MASTERDISTANCE(0) = nDelayDistance
FLY(0) = 0: GO(0)
MASTERDISTANCE(0) = nRampDistance
FOLLOW(0) = fFollowRatio
End Task

Task StopPaddles
Dim nStopFly As Integer
nStopFly = ENCODERWRAP(0) – ENCODER(0)
MASTERDISTANCE(0) = nStopFly * 2/3
FLY(0) = nStopFly
GO(0)
End Task

Event Fastin0

Event Latch0 if using Nextmove e100

This event is generated every time a product is detected (lead edge)

Start the paddles if they are stopped
If nPaddlesStopped Then
Run StartPaddles
Exit Event
End If

Stop the paddles if an overlength product is detected
If INSTATEx(1) Then
Run StopPaddles
Exit Event
End If

If this point is reached the paddles must be following and registration corrections can be applied as necessary
OFFSET(0) = nIdealPos – FASTENCODER(0)
GO(0)
End Event