PCI Bus, 1–8 axes
DMC-18x0 and DMC-18x2 Series

Product Description

The DMC-18x0 and DMC-18x2 Series are PCI bus motion controllers designed for multi-axis applications. For single axis PCI applications, Galil's DMC-1417 controller is recommended.

While the DMC-18x0 and DMC-18x2 controllers are both similar in performance, the Econo DMC-18x2 has a few less features that result in a cost-savings. Eliminated features include five through eight axes of control, optical isolation on inputs, uncommitted analog inputs, dual encoder inputs, and only one FIFO communication channel.

Both controllers incorporate a 32-bit microcomputer and provide such advanced features as PID compensation with velocity and acceleration feedforward, memory with multitasking for simultaneously running up to eight programs, and uncommitted I/O for synchronizing motion with external events. Modes of motion include point-to-point positioning, jogging, linear and circular interpolation, contouring, electronic gearing and ECAM.

Like all Galil controllers, the DMC-18x0 and DMC-18x2 controllers use a simple, English-like command language which makes them very easy to program. Galil's WSDK servo design software further simplifies system set-up with "one-button" servo tuning and real-time display of position and velocity information.

Features

- PCI card in 1 through 8 axis versions:
 - DMC-18x0 where x=1,2,3,4,5,6,7,8 axes
 - DMC-18x2 where x=1,2,3,4 axes
- User-configurable for stepper or servo motors on any combination of axes. Sinusoidal commutation for brushless servo motors. Optional firmware for piezo-ceramic motors.
- Accepts up to 12 MHz encoder frequencies for servos. Outputs up to 3 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, linear and circular interpolation, electronic gearing and ECAM. Features ellipse scaling, slow-down around corners, infinite segment feed and feedrate override
- Over 200 English-like commands including conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Multitasking for concurrent execution of up to eight programs
- Home input and forward and reverse limits accepted for every axis. Optical isolation on the DMC-18x0 only
- 8 Uncommitted inputs and 8 outputs for 1- through 4-axis models, 24 inputs and 16 outputs for 5- through 8-axis models. Optical isolation on the DMC-18x0 only
- High speed position latch and output compare for each axis
- 8 uncommitted analog inputs for the DMC-18x0 only
- Dual encoder inputs for the DMC-18x0 only
- Expansion for 64 I/O with optional DB-14064 board
- 100-pin SCSI connectors for each set of 4 axes. Galil's ICM-2900 interconnect module breaks-out 100-pin cable into screw terminals
- Communication drivers for all current versions of Windows, DOS and Linux
- CE certified
- Custom hardware and firmware options available
PCI Bus, 1–8 axes
DMC-18x0 and DMC-18x2 Series

Specifications

System Processor
- Motorola 32-bit microcomputer

Communications Interface
- DMC-18x0: PCI with bi-directional FIFO plus auxiliary FIFO
- DMC-18x2: PCI with bi-directional FIFO

Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
- Point-to-point positioning
- Jogging
- 2D Linear and Circular Interpolation with feedrate override
- Linear Interpolation for up to 8 axes
- Tangential Following
- Helical
- Electronic Gearing with multiple masters
- Gantry Mode
- Electronic Cam
- Contouring
- Teach and playback

Memory
- Program memory size — 1000 lines × 80 characters
- 254 variables
- 8000 array elements in up to 30 arrays

Filter
- PID (proportional-integral-derivative) with velocity and acceleration feedforward
- Notch filter and low-pass filter
- Dual-loop control for backlash compensation (DMC-18x0 only)
- Velocity smoothing to minimize jerk
- Integration limits
- Torque limits
- Offset adjustments
- Option for piezo-ceramic motors

Kinematic Ranges
- Position: 32 bit (±2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 12 million counts/sec for servo motors
- Acceleration: Up to 67 million counts/sec²

High Speed Position Latch
- Uncommitted inputs 1–8 latch X,Y,Z,W,E,F,G,H axes (latches within 0.1 microsecond without optoisolation and within 40 microseconds with optoisolation)

Dedicated Inputs (per axis)
- Main encoder inputs — Channel A, A-, B,B-,I, I- (±12 V or TTL)
- Dual encoder (for axes configured as servo) — Channel A, A-, B, B- (for DMC-18x0 only)
- Forward and reverse limit inputs — optoisolated on DMC-18x0
- Home input — optoisolated on DMC-18x0
- Selectable high-speed position latch input
- Selectable abort input

Dedicated Outputs (per axis)
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- PWM output also available for servo amplifiers
- Amplifier enable output
- Error output (per card)
- High-speed position compare output (per card)

Minimum Servo Loop Update Rate
- 1–2 axes: 125 microseconds
- 3–4 axes: 250 microseconds
- 5–6 axes: 375 microseconds
- 7–8 axes: 500 microseconds

Maximum Encoder Feedback Rate
- 12 MHz

Maximum Stepper Rate
- 3 MHz (Full, half or microstep)

Power Requirements
- DMC-18x0: +5V 750mA, -12V 40mA, +12V 40mA
- DMC-18x2: +5V 750mA, -12V 20mA, +12V 20mA

Environmental
- Operating temperature: 0–70º C
- Humidity: 20–95% RH, non-condensing

Mechanical
- DMC-18x0: 1–4 axes: 11.15” × 4.8”
- 5–8 axes: 12.3” × 4.8”
- DMC-18x2: 9” × 4.23”
PCI Bus, 1–8 axes

DMC-18x0 and DMC-18x2 Series

Instruction Set

Servo Motor
AF Analog feedback
DV Dual loop operation
FA Acceleration feedforward
FV Velocity feedforward
IL Integrator limit
IT Independent time constant
KD Derivative constant
KI Integrator constant
KP Proportional constant
NB Notch bandwidth
NF Notch frequency
NZ Notch zero
OF Offset
PL Pole
SH Servo here
TL Torque limit
TM Sample time

Stepper Motor
DE Define encoder position
DP Define reference position
KS Stepper motor smoothing
MT Motor type
RP Report commanded position
TD Step counts output
TP Tell position of encoder

Brushless Motor
BA Brushless axis
BB Brushless phase
BC Brushless calibration
BD Brushless degrees
BI Brushless inputs
BM Brushless modulo
BO Brushless offset
BS Brushless setup
BZ Brushless zero

I/O
AL Arm latch
CB Clear bit
CO Configure I/O points
II Input interrupt
OB Define output bit
OC Output compare function
OP Output port
SB Set bit
UI User interrupts

System Configuration
BN Burn parameters
BP Burn program
BV Burn variables and arrays
CE Configure encoder type
CN Configure switches
CO Configure I/O points
CW Data adjustment bit
DE Define dual encoder position
DP Define position
DR DMA/FIFO update rate
DV Dual velocity (dual loop)
EI Enable interrupts
EO Echo off
IT Independent smoothing
LZ Leading zeros format
MO Motor off
MT Motor type
PF Position format
QD Download array
QU Upload array
RS Reset
‘R’S Master reset
VF Variable format

Math/Special Functions
@SIN[x] Sine of x
@COS[x] Cosine of x
@COM[x] 1's compliment of x
@ASIN[x] Arc sine of x
@ACOS[x] Arc cosine of x
@ATAN[x] Arc tangent of x
@ABS[x] Absolute value of x
@FRAC[x] Fraction portion of x
@INT[x] Integer portion of x
@RND[x] Round of x
@SQR[x] Square root of x
@IN[x] State of digital input x
@OUT[x] State of digital output x
@AN[x] Value of analog input x

Interrogation
LA List arrays
LL List labels
LS List program
LV List variables
MG Message command
QR Data record
QZ Return DMA information
RP Report command position
RL Report latch
‘R’V Firmware revision information
SC Stop code
TB Tell status

Interrogation (cont.)
TC Tell error code
TD Tell dual encoder
TE Tell error
TI Tell input
TP Tell position
TR Trace program
TS Tell switches
TT Tell torque
TV Tell velocity

Programming
DA Deallocate variables/arrays
DL Download program
DM Dimension arrays
ED Edit program
ELSE Conditional statement
END End of cond. statement
EN End program
EX Halt execution
IF If statement
IN Input variable
JP Jump
JS Jump to subroutine
NO No-operation—for remarks
RA Record array
RC Record interval
RD Record data
REM Remark program
UI User interrupt
UL Upload program
ZS Zero stack

Error Control
BL Backward software limit
ER Error limit
FL Forward software limit
OE Off-on-error function
TL Torque limit
TW Timeout for in-position

Trippoint
AD After distance
AI After input
AM After motion profiler
AP After absolute position
AR After relative distance
AS At speed
AT After time
AV After vector distance
MC Motion complete
MF After motion—forward
MR After motion—reverse
WC Wait for contour data
WT Wait for time

Independent Motion
AB Abort motion
AC Acceleration
BG Begin motion
DC Deceleration
FE Find edge
FI Find index
HM Home
IP Increment position
IT Smoothing time constant
JG Jog mode
PA Position absolute
PR Position relative
SP Speed
ST Stop

Contour Mode
CD Contour data
CM Contour mode
DT Contour time interval
WC Wait for contour data

ECAM/Gearing
EA ECAM master
EB Enable ECAM
EC ECAM table index
EG ECAM go
EM ECAM cycle
EP ECAM interval
EQ Disengage ECAM
ET ECAM table entry
GA Master axis for gearing
GM Gantry mode
GR Gear ratio for gearing

Vector/Linear Interpolation
CA Define vector plane
CR Circular interpolation move
CS Clear motion sequence
ES Ellipse scaling
LE Linear interpolation end
LI Linear interpolation segment
LM Linear interpolation mode
ST Stop motion
TN Tangent
VA Vector acceleration
VD Vector deceleration
VE Vector sequence end
VM Coordinated motion mode
VP Vector position
VR Vector speed ratio
VS Vector speed
VT Smoothing time constant—vector
PCI Bus, 1–8 axes

DMC-18x0 and DMC-18x2 Series

Connectors

100-pin, high density; Connector: Amp# 2-178238-9, Cable: Amp# 2-175677-9; Enclosure: Amp# 176793-9

<table>
<thead>
<tr>
<th>Axis 1–4 DMC-18x0 and DMC-18x2</th>
<th>Axis 5–8 DMC-18x0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Analog ground</td>
<td>1 NC</td>
</tr>
<tr>
<td>2 Ground</td>
<td>2 Ground</td>
</tr>
<tr>
<td>3 5 V</td>
<td>3 5 V</td>
</tr>
<tr>
<td>4 Error output</td>
<td>4 Error output</td>
</tr>
<tr>
<td>5 Reset</td>
<td>5 Reset</td>
</tr>
<tr>
<td>6 Encoder—compare output</td>
<td>6 Encoder—compare output</td>
</tr>
<tr>
<td>7 Ground</td>
<td>7 Ground</td>
</tr>
<tr>
<td>8 Ground</td>
<td>8 Ground</td>
</tr>
<tr>
<td>9 Motor command W</td>
<td>9 Motor command H</td>
</tr>
<tr>
<td>10 Sign W / dir W</td>
<td>10 Sign H / dir H</td>
</tr>
<tr>
<td>11 P WM W / step W</td>
<td>11 P WM H / step H</td>
</tr>
<tr>
<td>12 Motor command Z</td>
<td>12 Motor command G</td>
</tr>
<tr>
<td>13 Sign Z / dir Z</td>
<td>13 Sign G / dir G</td>
</tr>
<tr>
<td>14 P WM Z / step Z</td>
<td>14 P WM G / step G</td>
</tr>
<tr>
<td>15 Motor command Y</td>
<td>15 Motor command F</td>
</tr>
<tr>
<td>16 Sign Y / dir Y</td>
<td>16 Sign F / dir F</td>
</tr>
<tr>
<td>17 P WM Y / step Y</td>
<td>17 P WM F / step F</td>
</tr>
<tr>
<td>18 Motor command X</td>
<td>18 Motor command E</td>
</tr>
<tr>
<td>19 Sign X / dir X</td>
<td>19 Sign E / dir E</td>
</tr>
<tr>
<td>20 P WM X / step X</td>
<td>20 P WM E / step E</td>
</tr>
<tr>
<td>21 Amp enable W</td>
<td>21 Amp enable H</td>
</tr>
<tr>
<td>22 Amp enable Z</td>
<td>22 Amp enable G</td>
</tr>
<tr>
<td>23 Amp enable Y</td>
<td>23 Amp enable F</td>
</tr>
<tr>
<td>24 Amp enable X</td>
<td>24 Amp enable E</td>
</tr>
<tr>
<td>25 A+ X</td>
<td>25 A+ E</td>
</tr>
<tr>
<td>26 A- X</td>
<td>26 A- E</td>
</tr>
<tr>
<td>27 B+ X</td>
<td>27 B+ E</td>
</tr>
<tr>
<td>28 B- X</td>
<td>28 B- E</td>
</tr>
<tr>
<td>29 I+ X</td>
<td>29 I+ E</td>
</tr>
<tr>
<td>30 I- X</td>
<td>30 I- E</td>
</tr>
<tr>
<td>31 A+ Y</td>
<td>31 A+ F</td>
</tr>
<tr>
<td>32 A- Y</td>
<td>32 A- F</td>
</tr>
<tr>
<td>33 B+ Y</td>
<td>33 B+ F</td>
</tr>
<tr>
<td>34 B- Y</td>
<td>34 B- F</td>
</tr>
<tr>
<td>35 I+ Y</td>
<td>35 I+ F</td>
</tr>
<tr>
<td>36 I- Y</td>
<td>36 I- F</td>
</tr>
<tr>
<td>37 A+ Z</td>
<td>37 A+ G</td>
</tr>
<tr>
<td>38 A- Z</td>
<td>38 A- G</td>
</tr>
<tr>
<td>39 B+ Z</td>
<td>39 B+ G</td>
</tr>
<tr>
<td>40 B- Z</td>
<td>40 B- G</td>
</tr>
<tr>
<td>41 I+ Z</td>
<td>41 I+ G</td>
</tr>
<tr>
<td>42 I- Z</td>
<td>42 I- G</td>
</tr>
<tr>
<td>43 A+ W</td>
<td>43 A+ H</td>
</tr>
<tr>
<td>44 A- W</td>
<td>44 A- H</td>
</tr>
<tr>
<td>45 B+ W</td>
<td>45 B+ H</td>
</tr>
<tr>
<td>46 B- W</td>
<td>46 B- H</td>
</tr>
<tr>
<td>47 I+ W</td>
<td>47 I+ H</td>
</tr>
<tr>
<td>48 I- W</td>
<td>48 I- H</td>
</tr>
<tr>
<td>49 +12 V</td>
<td>49 +12 V</td>
</tr>
<tr>
<td>50 +12 V</td>
<td>50 +12 V</td>
</tr>
</tbody>
</table>

*NC (for 18x2)
Hardware Accessories

ICM-1900 Interconnect Module
The ICM-1900 Interconnect Module breaks-out the 100-pin main cable and 25-pin auxiliary encoder cable into screw-type terminals for quick connection of system hardware. An ICM-1900 is required for each set of four axes. The ICM-1900 is contained in a metal enclosure with dimensions of $13.5\times2.675\times6.88$ and 1/4" diameter keyholes for mounting. The ICM is normally shipped configured for high amp enable (-HAEN). For low amp enable, order ICM-1900-LAEN. Also specify -OPTO for optoisolated outputs. If using auxiliary encoders with the DMC-18x0, use a CABLE-26-25 26-pin to 25-pin converter to the ICM-1900.

AMP-19x0 Interconnect Module with Amplifiers
The AMP-19x0 series is an ICM module above with 1 to 4 PWM amplifiers for brush-type servo motors. Each amplifier provides 6 amps continuous, 10 amps peak at up to 80 Volts. The gain of the amplifier is 1 A/V and requires an external DC supply from 20 to 80 Volts. The minimum motor inductance is 1 mH and the PWM frequency is 30 kHz.

ICM-2900 Interconnect Module
The ICM-2900 breaks-out the 100-pin SCSI cable into screw-type terminals. One ICM-2900 is required for each set of four axes. The ICM-2900-FL has flanges which allow standard screw-type mounting for card-level Optima controllers. Specify -OPTO for optoisolated outputs. Specify -HAEN for high amp enable and -LAEN for low amp enable.

DB-14064 I/O Expansion
The DB-14064 is an optional board which provides 64 additional I/O for the DMC-18x0 and DMC-18x2 controllers. This board mounts directly onto the back of the controller and provides 64 I/O points configurable by the user for inputs or outputs. The I/O is accessible through two 50-pin headers. A CB-50-80 adaptor can be used to convert the IDC connectors to an 80-pin connector. Using the adaptor and the Cable-80 allows for direct connection to the Galil IOM-1964 opto-isolation module.
PCI Bus, 1–8 axes

DMC-18x0 and DMC-18x2 Series

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1810</td>
<td>1-axis Optima, PCI</td>
<td>$1095</td>
<td>$795</td>
</tr>
<tr>
<td>DMC-1820</td>
<td>2-axis Optima, PCI</td>
<td>$1495</td>
<td>$875</td>
</tr>
<tr>
<td>DMC-1830</td>
<td>3-axis Optima, PCI</td>
<td>$1895</td>
<td>$935</td>
</tr>
<tr>
<td>DMC-1840</td>
<td>4-axis Optima, PCI</td>
<td>$2195</td>
<td>$995</td>
</tr>
<tr>
<td>DMC-1850</td>
<td>5-axis Optima, PCI</td>
<td>$2595</td>
<td>$1345</td>
</tr>
<tr>
<td>DMC-1860</td>
<td>6-axis Optima, PCI</td>
<td>$2795</td>
<td>$1425</td>
</tr>
<tr>
<td>DMC-1870</td>
<td>7-axis Optima, PCI</td>
<td>$2995</td>
<td>$1525</td>
</tr>
<tr>
<td>DMC-1880</td>
<td>8-axis Optima, PCI</td>
<td>$3195</td>
<td>$1595</td>
</tr>
<tr>
<td>DMC-1812</td>
<td>1-axis Econo PCI</td>
<td>$795</td>
<td>$595</td>
</tr>
<tr>
<td>DMC-1822</td>
<td>2-axis Econo PCI</td>
<td>$895</td>
<td>$665</td>
</tr>
<tr>
<td>DMC-1832</td>
<td>3-axis Econo PCI</td>
<td>$1045</td>
<td>$725</td>
</tr>
<tr>
<td>DMC-1842</td>
<td>4-axis Econo PCI</td>
<td>$1195</td>
<td>$795</td>
</tr>
<tr>
<td>CB-50-100-1880</td>
<td>50- to 100-pin converter board; incl. two ribbon cables for DMC-1850 to -1880</td>
<td>$75</td>
<td>$50</td>
</tr>
<tr>
<td>CABLE-26-25</td>
<td>26-pin IDC to 25-pin D type for auxiliary encoders</td>
<td>$15</td>
<td>$15</td>
</tr>
<tr>
<td>CABLE-100-1M</td>
<td>100-pin high-density cable in 1 meter length</td>
<td>$125</td>
<td>$95</td>
</tr>
<tr>
<td>CABLE-100-2M</td>
<td>100-pin high-density cable in 2-meter length</td>
<td>$135</td>
<td>$100</td>
</tr>
<tr>
<td>CABLE-100-4M</td>
<td>100-pin high-density cable in 4 meter length</td>
<td>$150</td>
<td>$105</td>
</tr>
<tr>
<td>ICM-1900</td>
<td>Interconnect module (use 1 for every 4 axes). Specify -HAEN for high amp enable or -LAEN for low amp enable</td>
<td>$345</td>
<td>$245</td>
</tr>
<tr>
<td>ICM-1900-OPTO</td>
<td>ICM with optoisolated outputs</td>
<td>$395</td>
<td>$295</td>
</tr>
<tr>
<td>ICM-2900-FL</td>
<td>Interconnect module (use 1 for every 4 axes). Specify -HAEN for high amp enable or -LAEN for low amp enable. Specify -FL for flange</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>ICM-2900-OPTO</td>
<td>ICM with optoisolated outputs</td>
<td>$345</td>
<td>$245</td>
</tr>
<tr>
<td>DB-14064</td>
<td>Attachment board for 64 additional I/O for DMC-18x0, DMC-18x2</td>
<td>$395</td>
<td>$245</td>
</tr>
<tr>
<td>CB-50-80</td>
<td>50-pin to 80-pin adaptor for DB-14064</td>
<td>$75</td>
<td>$50</td>
</tr>
<tr>
<td>IOM-1964</td>
<td>Input/output optoisolated module for 64 I/O</td>
<td>$695</td>
<td>$495</td>
</tr>
<tr>
<td>Galil Utilities</td>
<td>Communication drivers, SmartTERM, DMCDOS</td>
<td>$20 for CD; free download</td>
<td></td>
</tr>
<tr>
<td>CTOOLKIT</td>
<td>C/C++ documentation and examples</td>
<td>Included with Utilities</td>
<td></td>
</tr>
<tr>
<td>WSDK</td>
<td>Set-up, tuning and analysis software</td>
<td>$195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Visual Basic or Visual C++</td>
<td>$595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.