

TCS3 Project

Replacement of the Telescope Control System for the IRTF

Conceptual Design Review

Aug 21, 2003

Table of Contents:

- 1. Schedule, Tasks, and Budget
- 2. Overview
- 3. Computer & Servo Controller
- 4. T3 Electronics
- 5. Encoders
- 6. MCC Replacement
- 7. Facility IO
- 8. Software
- 9. TCS1-TCS3 switching
- 10. RemoteGUI
- 11. Remove TCS1

1. Schedule, Tasks, and Budget

The TCS3 project is organized as a series of Tasks. A schedule, overview of the tasks, and budget is summarized below.

1.1 Schedule

TCS3 Project Schedule)03											_)04										20					
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb) Mar	Api	r Mav	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr					Oct I	Nov D
Originial Schedule										١	Year	1		_	_	_							Yea	r 2					Year	r 3 (5	i mor	nths)		
Prelimiary Design (2 months)																																		
Procurement (4 months)																																		
Development and Testing (10 months)																																		
Observatory Preparation (3 months)																																		
Installation at observatory (3 months)																																		
Testing and Engineering runs (3 months)																																		
Operational shakedown (6 months)																																		
Task Milestones																																		
0. Project Overview - May 22, 2003																																		
1. Conceptual Design - Aug, 2003																																		
2. Build TCS3 Computer, controller, t3																																		Т
electronics, servo simulator																																		
3. Encoder Replacement																																		
4. Install MCC replacement at summit.																																		
5. Prototype & Build TO Panel																																		
6. TCS1-TCS3 switch (Drive RA, Dec, and																																		
Dome, and Shutter)																																		
7. RemoteGUI																																		
8. Daytime Test & Servo Tuning																																		
9. Night Engineering (Pointing Run)																																		
10. Remove TCS1																																		
Milestones Achieved																																		
April 2000 - Started writing description of work																																		
estimating cost, manpower, and requirerments																																		
for upgrade. Document revised numerious																																		
times. Eventually it was submitted as proposal		1		1									1				1																	
to NASA on June 2001															L																			
Grand Awarded June 2002																																		
Project Started - May 2003																																		Τ
TCS Programmer Hired - May 2003 to Oct 2008	5																																	\neg
Project Overview Presented to IRTF																																		\neg
																																		\neg

1.2 Task List

- Task: Conceptual Design.
 Project Man-months: 3 (Jun-Aug 03)
 Major Milestone: Present Conceptual Design.
- 2. Task: Build TCS3 computer, servo controller, and servo simulator.

Purchase Servo controller (RA, Dec, Dome). Purchase Computer System (2 each, summit & hilo Lab/spare system) Purchase TCS3 Equipment Rack and accessories. Design/Build T3 Electronics interface Implement Servo Simulator (Lab test motors) Develop TO Panel prototype

Project Man-months: 9 (Sept 03 – May 04) **Major Milestone:** Control simulated HA, Dec motors using computer, controller, and T3 electronics.

3. Task: Encoder Replacement.

Install new absolute encoders. Install new incremental encoders. Read the current Dome scanner. Install computer system at summit. Acquire encoder data into T3 applications.

Project Man-months: 6 (Oct 03 – Mar 04) **Major Milestone:** TCS3 computer system provides HA, Dec, Dome encoding information.

4 Task: Install MCC replacement at summit.

Prep TO area for new T3 Displays and TO Panel. (Preliminary task). Purchase Facility IO hardware Develop Facility IO software Install Facility IO at summit. Develop MCC replacement T3 Display 1 & Display 2 GUI. Switch non critical MCC Functions to TCS3

Project Man-months: 6 (Jan – Jun 04) **Major Milestone:** TCS3 used in operations (replacing some non critical MCC functions).

5 **Task**: Prototype and Build TO Panel

Development of TO Panel prototype (Preliminary task sept 03 – mar 04) Construct the TO Panels (2 each, summit and development system).

Install TO Panel at summit.

Project Man-months: 3 (Apr-Jun 04) **Major Milestone:** TO Panel completed.

6 Task: TCS1-TCS3 Switching.

Install tcs1/tcs3 switch over Hardware. Develop switch over procedures. Switch & test Dome control. Switch & test HA, Dec Axis Control. Install new Shutter JBox and control using MCC Display.

Project Man-months: 4 (Jul – Oct 04) **Major Milestone:** TCS3 Drives RA, Dec, and Dome successfully

7. Task: RemoteGUI

Purchase computer for portable T3 interface. Implement RemoteGUI software.

Project Man-months: 3 (Oct – Dec 04) **Major Milestone:** RemoteGUI completed.

8. Task: Daytime Test

Schedule Engineering (Daytime) Test: Switch from TCS1 to TCS3. Test HA, Dec, Dome control.

Project Man-months: 3 (Jan-Mar 05) **Major Milestone:** RA, Dec, and Dome servo performance is acceptable.

9. Task: Night Engineering

Pointing calibration: Take pointing data, reduce, and input into TCS.

Project Man-months: 1 (Apr 05) **Major Milestones**: TCS3 pointing is calibrated.

10. Task: Remove TCS1

Decommission TCS1 Remove TCS1 equipment. Remove TCS1-TCS3 Switching equipment. Remove TCS1 APE and install new T3 absolute encoders. Remove TCS1 inc encoders, and relocate T3 inc encoders.

Project Man-months: 3 (Aug-Oct 2005) **Major Milestones**: TCS1 is removed from IRTF.

1.3 Budget

	Year 1	Ĩ	Year 2		Year 3	
Awarded	\$300,000.00		\$322,000.00		\$72,000.00	
Computer & Servo Simulator	\$44,500.00					
T3 Electonics	\$12,000.00					
Encoder replacement Absoute Incremental	\$21,000.00 \$21,700.00					
MCC Replacement Prep TO area TO Panel + prototype.	\$33,000.00					
Facility IO	\$14,000.00		\$11,000.00			
Software Development Consulting Applications	\$24,800.00		\$5,000.00			
TCS1-TCS3 switching			\$20,000.00			
RemoteGUI			\$6,000.00			
Remove TCS1					\$15,000.00	
14 Supplies 15 misc	\$820.00 \$2,000.00		\$1,000.00 \$5,000.00			
Personnel 16 Software Engineer 17 Electronic Engineer 18 Electronic Technician	\$104,500.00 \$13,364.80 \$0.00	1 yr 1 mon.	\$109,800.00 \$53,459.20 \$106,214.40	4 mon	\$54,900.00	6 mon.
19 Facilities/Admministrative Cost	\$7,782.00		\$230.00		\$123.00	
Total	\$299,466.80		\$317,703.60		\$70,023.00	

TCS3 Conceptual Design

2. TCS3 Overview

The overview identifies the major component of the TCS3.

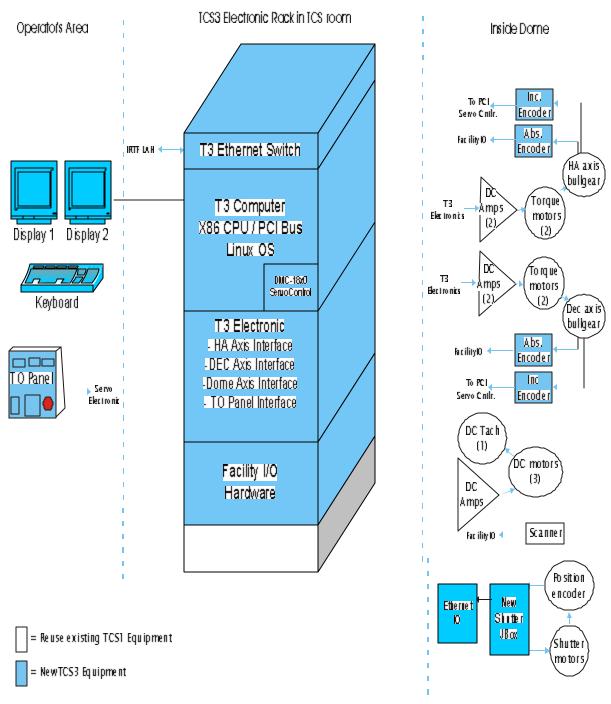


Figure 2.1 provides an overview of TCS3

2.2.1 TCS3 Display1, Display2, and TO Panel

The operator's interface to the T3 systems are Display1, Display2, and the TO panel. Display1 and 2, along with a mouse and keyboard are the console items to the T1 computer. The TO Panel is connected to TCS3 Servo Electronics.

2.2.2 T3 Equipment Rack

A 19" equipment rack will be located in the TCS Room, and will house the computer, T3 electronics, Facility IO hardware, and other T3 equipment.

2.2.3 T1 computer

The T1 computer is tcs3 computer system. This will be an x86/PCI computer running the Linux Operating System. A servo controller board will be hosted in a PCI slot.

2.2.4 T3 Electronics

Custom build electronics will interface the T1 computer and TO Panel to the RA, Dec, and Dome servo system.

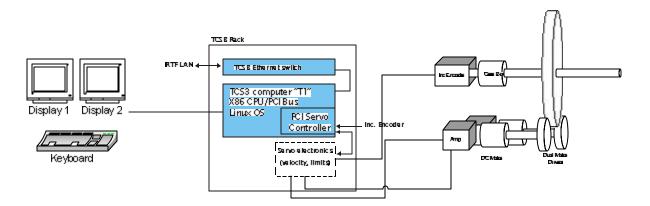
2.2.5 Facility IO

A general purpose facility IO system will provide the needed analog and digital IO to allow the T1 computer and servo electronics to interface with the facility hardware.

2.2.6 Encoders

New absolute and incremental encoders will be installed in parallel with the TCS1 encoders. TCS3 will use the present bar code system for the dome encoding.

2.2.7 Shutter JBox Replacement


The Shutter JBox will be replaced to allow the shutter control IO to be routed using an Ethernet IO module.

TCS3 Conceptual Design

3. Computer System and Servo Controller, and Servo Simulator

3.1 TCS3 Computer

The TCS3 computer is named "T1". TCS3 will be made up of 1 computer. This host will be located in the TCS3 Rack in the TCS Room.

www.galilmc.com.

3.3 Servo Simulator

The TCS3 project will build and maintain a simple model of the HA and Dec motors and incremental encoders. Absolute encoding not required. We will build a model of each axis, as illustrated in Figure 2.

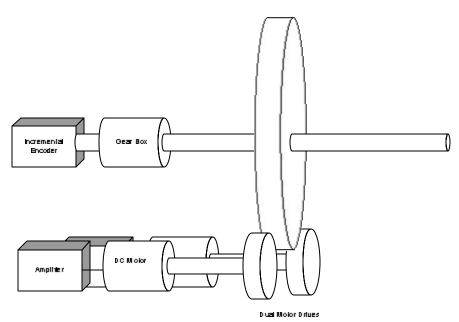


Figure 2 – Servo Simulator

Motor:	+/- 10v input signal. DC motor
Motor rpm:	1200 as/s * 144 / 1296000 as/rev = 0.13 rps. (7.7 seconds to do 1 rev).
Motor-Bullgear gearing: Axis Shaft diameter:	144:1 (same as IRTF motor-bullgear ratio, per Tim Bond 6-24-03) TBD
Incremental encoder:	100 pulse/as resolution

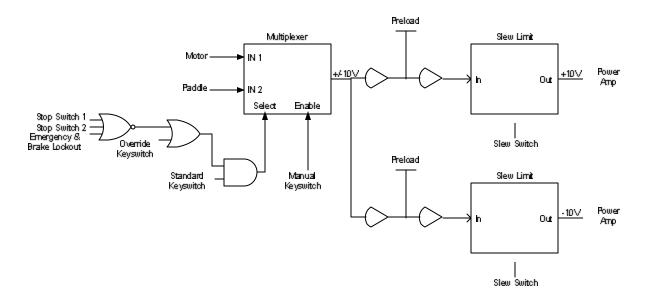
The spare dome scanner will be used to develop/test the dome encoding. A simulator is not need for the dome.

3.4 TCS3 Rack

A computer rack will be purchased and assembled. This rack will house the computer, T3 electronics, and Facility IO hardware. Sliding shelf will be used to enable easy access to these electronic boxes. Also include in the rack will be cable mounting hardware, distribution for AC power, and a network switch.

3.4 Cost Estimate

Desc	Qty	Priœ	Subtota	al	
Computer Equipment					
19" Rackmount Case	2	50	D 100	О	
x86Computer	2	200	0 400	О	
Monitors	4	60	D 240	О	
CISCO 24 port 10/100 swit	ch 2	2 100	0 200	О	
19" Equipment Rack+acc	essorie	5			
(shelfs, power, cable waps	;) 2	2 500	0 1000	ю	
					1940
Servo Controller					
Galil DMC-1840	Э Э	; 220	0 660	O	
Galil Accessories	3	3 150	0 450	0	
					1110
Servo Simulator					
Motor/Amps	5	; 1 0 0	0 500	О	
Gearbox/Inc. Encoders	2	2 100	0 200	О	
Mechanical Hardware	2	200	0 400	О	
ShopLabor	40) 7	5 300	О	
					1400
			Total		4450


4. T3 Electronics

The T3 electronics refer to the following custom design and build electronics:

- 1. Axis Interface (HA, Dec)
- 2. Dome Interface
- 3. TO Panel Interface

4.1 Axis Interface

The axis interface is custom-built electronics that provide the glue logic between the controllers (servo board, TO Panel) and the motor amplifier. There will be two Axis interfaces: HA Axis Interface, and the Dec Axis Interface. The HA and DEC are identical in function which is shown in figure 4.1.

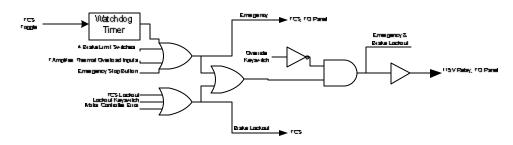


Figure 4.2

4.1.2 Modes

The AI board will support the following modes, which are selected by the operator on the TO panel:

Lockout – Control to the motor amplifiers are disabled.

Manual – The control signals for the HA, Dec and Dome are generated from the TO panel's joystick interface. Velocity is limited to 400 as/s.

Standard – The Standard is the computer-controlled mode. The control for the motor amplifiers come from computer's servo controller board.

4.1.3 Limits

Each axis has a Slew, Stop, and Brake limit. The AI will react to the limit as follows:

Slew – The velocity output to the motor amps be limited to tracking velocity (400 as/s).

Stop – The velocity output to the motor amp will be adjusted to a rate of zero.

Brake – The velocity output to the motor amp will be adjusted to a rate of zero and the brakes on the motor will be engaged. Emergency state will be enabled.

The state of the stop limit will be input into the servo controller's axis limit input. The limit override on the TO panel will disable all 3 limits.

4.1.4 Emergency

The Emergency condition occurs when:

1- Brake limit is enabled.

2- Emergency input is enabled. (There are two inputs: TO panel, software input via Facility IO)

3- Over-Current or Over-Temperature error from Amps.

When the emergency condition is active the motor commands to the amplifiers are shut off, and the brakes are engaged. The emergency condition is reset from the TO Panel reset button or facility IO reset input.

4.1.5 General Indicators

Indicator	TO Panel	Facility
		ΙΟ
Mode (Manual, Standard)	Y	Y
Limit Override	Y	Y
Emergency	Y	Y
Slew Limits	Y	Y
Stop Limits	Y	Y
Brake Limits	Y	Y
Motor brake on	Y	Y
Motor Current	Ν	Y

Output for indicators and monitoring are needed for the following:

4.2 Dome Interface

The function of this servo interface is similar to the HA and DEC axis with the exception that this controller drives the servo amplifier in both directions by supplying a $\pm 10V$ signal to the amplifier. The dome interface is shown in figure 4.3.

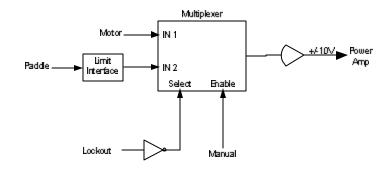
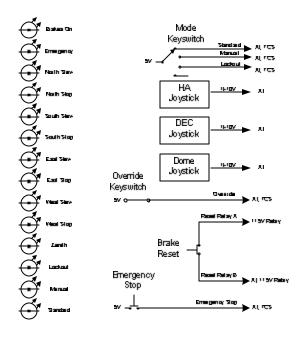



Figure 4.3

4.3 TO Panel Interface

The function of the TO board is to interface to the TO panel components which is shown in Figure 4.4. These components include:

- HA, DEC, and Dome hand paddles.
- Emergency stop button with a reset
- Key switch with the Lockout, Manual, and Standard positions
- Brake control and reset switch, which will also control the switched AC line breaker.
- LEDs to indicate: slew, stop, and brake limits, Zenith, emergency, and other conditions

4.4 Cost Estimate

We expect to design 2 boards: 1) HA, Dec, and Dome Axis Interface. 2) TO Panel Interface. We estimated 3 runs for fabrication of the circuit boards: 2 prototypes, and a final production run.

Desc	Runs	P	rice	Subtotal
Board Fabrication				
HA, Dec, Dome Axis Interface		3	2000	6000
TO Panel Inteface		3	2000	6000
			Total	12000

5. Encoder Replacement

5.1 Top Level Encoder Requirements.

The encoder requirements for the new TCS are as follows:

Absolute position resolution: 1.0 arcsec[0.1 arcsec goal]Incremental position resolution: 0.01 arcsec[2000 arcsec/sec goal]Maximum slew rate: 1200 arcsec/sec on sky[2000 arcsec/sec goal]Maximum slew acceleration: 1200 arcsec/sec²[2000 arcsec/sec goal]Environment: -10 to 50 deg C.Humidity: 100% Relative Humidity.

The old TCS is currently unsupported and the implication of this is that we cannot modify any of the existing encoding hardware, until after the new encoders are commissioned. Unfortunately, the old encoders are installed at the best locations (easy access, stiffness, protected, etc.) on the telescope.

RA APE DEC APE

5.2 Current DEC and RA Absolute Encoding.

The current RA absolute position encoder (APE) is located in the North Pier. It is an inductosyn encoder with one half mounted on the yoke, and the other half mounted to the pier.

The DEC APE is located in the west arm of the yoke. It is also an induction type encoder (identical to the RA encoder) with one half mounted to the telescope central section, and the other half mounted on the yoke.

Both of the current APEs have a resolution of 0.1 arcsec.

5.3 Current DEC and RA Incremental Encoding.

RA Inc. Encoder

Dec Inc. Encoder

The current RA incremental encoder is located on the South Pier. It is an optical type encoder (manufacturer – Teledyne Gurley) driven through (approximately) a 180:1 gear ratio friction drive on the back of the bull gear.

The current DEC incremental encoder is located in the west arm of the yoke and access is from inside the yoke. It is also an optical type encoder (identical to the RA encoder) also driven through (approximately) a 180:1 gear ratio friction drive on the back of the bull gear.

Both of the current incremental encoders have a 3600 line count and associated electronics capable of 40x interpolation for a total of 144 000 pulses/ revolution. After accounting for the gear ratio, this works out to about $(3600 \times 40 \times 180) / (360 \times 60 \times 60) = 20$ pulses per arcsec or 0.05 arcsec resolution.

*** Currently, the exact gear ratio is determined through a calibration procedure and works out to be about 19.9041?!?

5.4 TCS3 Absolute Encoding

Due to the fact that the current APEs are located in the optimal position for absolute encoding, and the fact that we cannot disturb these encoders until the new TCS3 has completed commissioning, it will be necessary to install temporary absolute encoders. Once the new TCS3 system is commissioned, the encoders will be migrated to the current absolute encoder location.

These temporary absolute encoders will be installed on the bull gear through a friction drive. This is a less than ideal situation since they could be subject to slippage or error stack-up at the friction drive. Since the encoder will be driven through the friction drive at an approximate gear ratio of 150:1, it will be necessary for the encoder to yield positional information on its angle as well as information about its number of turns.

The hardware required for the temporary absolute encoder will be similar (if not identical) to the hardware fabricated for the incremental encoders.

A possible candidate for the temporary absolute encoder is the Gurley model A23S Absolute Encoder:

Resolution: 8192 words/turn # of resolved turns: 256 gear ratio of 150:1

Yields 1 228 800 counts / rev of the bull gear 0.948 counts / arcsec on the sky approx. 1.0 arcsec resolution

The new "final" absolute encoders will optical encoders and will be located in the current APE positions. There are many encoders on the market that will easily meet our requirements.

A possible candidate for the final absolute encoder is the Heidenhain RCN226 Absolute Angle Encoder:

67 108 864 position values / rev (26 bits)

Yields 51.78 counts / arcsec on the sky 0.0193 arcsec resolution

5.4 TCS3 Incremental Encoding

Similar to the case of the absolute encoders, the current incremental encoders are located in the optimal position. The fact that we cannot disturb these encoders until the new TCS3 has completed commissioning will make it necessary to install temporary incremental encoders. Once the new TCS3 system is commissioned, the encoders will be migrated to the current incremental encoder location.

These temporary absolute encoders will be installed on the bull gear through a friction drive and identical to the final encoder compliment. Since the encoder will be driven through the friction drive at an approximate gear ratio of 150:1, specialized hardware will have to be fabricated to provide alignment and tensioning. Every effort will be made to make the fabricated hardware for the temporary configuration identical to the hardware required for the final configuration.

Since the TCS3 computer may adjust the servo velocity based on positional error measured at 10 Hz, a resolution of 100 Hz (10 x 10 Hz) is highly desired.

A possible candidate for the incremental encoder is the Gurley Series 8235S rotary incremental encoder, along with series HR2A high resolution interpolator:

Line count = 11250 lines/rev Interpolation = 80x Gear ratio of 150:1

- Yields 135 000 000 counts/rev of the bull gear 104.167 counts / arcsec on the sky approx. 0.01 arcsec resolution
- Also slew rate of 1200 arcsec/sec = 125 000 counts/sec (emerging from electronics) (125 000 counts/sec) / (80) = 1562.5 Hz (emerging from encoder)

It would be desirable to find an encoder with higher resolution. This would allow us to work with a smaller gear ratio, mitigating many of the errors/problems that are associated with the friction drive. Several higher resolution encoders from Heidenhain will be investigated.

5.3 Current Dome Encoder

Dome Scanner (side view)

Dome scanner (back)

The dome is encoded using a bar code label and a scanner. The scanner outputs is serial (RS-232?). The serial is converted into a parallel graycode using an embedded CPU board.

The barcode values range from 1 to 1800, giving the dome a resolution of 0.2 degrees.

5.5 Budget / Manpower

The IRTF will provide the mechanical, electrical, and software support via Bond, Keske, and Denault.

Initial cost estimates are as follows:

Absolute Encoders							
	Items	Unit Cost	Quanity	Sub-Total			
	Gurley A23S	1000	3	3000			
	Misc Materials	1000	2	2000			
	Heidenhain RCN226	1000	3	3000			
	Misc. Materials	500	2	1000			
	Shop Time	75	160	12000			
			Total	21000			
Incremental Encoders							
	Items	Unit Cost	Quanity	Sub-Total			
	Gurley 8235S	950	3	2850			
	Gurley 8235S Misc Materials	950 1000	3 2	2850 2000			
	,						
	Misc Materials	1000	2	2000			
	Misc Materials Gurley HR2A	1000 950	2	2000 2850			
	Misc Materials Gurley HR2A Misc. Materials	1000 950 1000	2 3 2	2000 2850 2000			
	Misc Materials Gurley HR2A Misc. Materials	1000 950 1000	2 3 2 160	2000 2850 2000 12000			

otal	42700

6. MCC replacement

6.1 TCS1 MCC1

Universal time and Local time to be displayed on tcs3 graphics window.

All functions can be implemented using software commands.

The speaker is used to issue beep for operator feedback.

6.2 TCS1 MCC2

MCC2 control/display is mostly related to the TCS servo functions (RA, Dec, DOME).

Note from MCC meeting:

- 1. Safety issue In the past the computer had shutter control. This was disabled, the shutter can only be controlled via the MCC. The LED indicated when the shutter has reached its destination. Communication to the shutter is via slip ring. The IRTF has 7 slip ring:
 - 1-3. Power (3 Phases)
 - 4. GND
 - 5. Neutral
 - 6. Tone Modem UP. Control signals for lights and shutter.
 - 7. Tone Modem Down. LED switch for shutter position.
 - 8. Signal GND.

	1	1			
Name	Description	10	Port	Widget	TO Panel
Sidereal time Display	display sidreal time		Y	display value	
Right ascension	display of RA		Y	display value	
Hour Angle	display of HA (from APE)		Y	display value	
Declination	display of dec (from APE)		Y	display value	
	only use to adjust time in				
Out-Hold	manual mode		N		
Fast Set	п		Ν		
Slow Set	н		N		
Trim +/-			N		
	Thumh wheels to optor				
Quide dealization Treats NC	Thumb wheels to enter				
Guide - declination - Track - NS	rates		N		
over-speed			Ν		
excess error			Y	displavServo errov value.	
track			N		
	Thumb wheels to enter				
Guide - Right Ascension -track - WE			Ν		
over-speed			N		
excess error			Y	DisplavServo errov value.	
track			N		
	Press button to accept		I –		
Track & Guide (Red Button)	Track/Guide rates.		N		
	Selects guide rate - SW		Ľ		
Guide Rate (60, 30, 15, SW)	input from thumb wheels.		N		
SHUTTER	input nom thamb wheels.				
SHOTTER					
Lower Shutter -open/close hold-switch			Y	up/down hold switch	
Upper Shutter - open/close hold-					
switch			Y	up/down hold switch	
U.S. Up limit	DI	DI	Y	LED display	
Touch	DI	DI	Y	LED display	
	DI - present shutter can't				
L.S. Up Limit	reach limit	DI	Y	LED display	
LS. Low limit	DI	DI	Ý	LED display	
Crane not stowed	DI	DI	Y	LED display	
Clare not stowed	Ы	Ы		LED display	
DOME					
	enable/disable computer				
Dome on off	control		Y		
	Auto - computer control.				
	Manual used creep				
Dome Mode	buttons.		Y	choice menu	
Bonno modo	Creep = use dome creep				
	speed; Joy = used joy stick				
Manual / Inc. autitals	to move.		~	up/down hold switch	
Manual / Joy switch	to move.		ř	up/down noid switch	
	In creep, this level controls		I		
Creep speed	the velocity of motors.		Y	value bar	
	In Joy mode, move the		1		
	dome L/R using the		1		
Dome Joy Stick	joystick				
	offset buttons for LSI.				
	TCS3 may need error		1		
	N,S,E,W; Also pressing		1		
	this button disables the		1		
	slew		v		
Telescope Guide: N, S, E, W	21CW	8			1
	NUMBER OF BUILDING	8	 		1
	Nob to indicate who is		1		
System Mode	controling the servo				
Manual	Under control of MCC		N		
Standard	LSI-11/23 control		N		
Comp	PDP computer - obsolete		Ν		
SLEW					
Slew enable	Hold to enable slew rates	Ì	Y		up/down hold switch
Slew joystick	Manual slew		v	N-S-E-W buttons	
CIEW IOVAIICA			1	IN-OTETW DUILOUS	1
			 		
	7				
	Zero velocity to servo				
Emergency Stop Nob	motors (RA, Dec, Dome)		Y		Big Red, push button.
Reset (red button)	Enable servo after stop.		Y		??

MCC2 functional description table

6.3 TCS1 MCC3

MCC3 s used mostly for Facility IO and TCS function not directly related to the servo.

- 1. Dave and George suggested that we have a way of saving and recalling counterweight configurations. Multiple configurations are needed for various instrument configurations.
- 2. Limits. The RA DEC axis has 3 limits controls:
 - a. Slew This limits the velocity current from slew (1200 as/s) to track (400 as/s) speed.
 - b. Stop This sets the velocity current to zero.
 - c. Brakes This turns on the brakes. The disable this limit, a override card is plugged into the qBus.

These are safety function provide by the tcs electronics. not software algorithms. TCS3 will need to preserve these limits; however the brake override can be a switch in the tcs3 electronic. The tcs3 software should monitor the tcs3 brake override.

3. Not shown is a mirror support air pressure input. The is a Analog voltage. A serial based DV Monitor box is installed. Currently this data is not monitored or recorded. TCS3 will probably acquire the analog Input (not use the serial monitor).

TCS3 Conceptual Design

Name	Description	10	Port	Widget	TO Panel
Righ Ascension					
RA Drive current west	Show drive currents. 2	Analog In	Y		
RA Drive current east	motor per axis	Analog In	Y		
DA Diff autholi	Actual or differential				
RA Diff switch Declination	currents.		Ν		
	Show drive surronte 2	Angles In	Y		
Dec Drive current west Dec Drive current east	Show drive currents. 2 motor per axis	Analog In Analog In	ř V		
Dec Drive current east	Actual or differential	Analod In	ř		
Dec Diff switch	currents.		N		
Dome System	currents.				
Meter1		Analog In	v		
Meter1 Meter2	currents. Dome has 3 motors, 1 master and 2	Analog In	ř V		
Meter2 Meter3	slaves	Analog In	Ý		
Meter & Turn nob	SIGVES				
RH	Weather data - R. Hum.				
TEMP	Weather data - temp				
RH Alarm	Shows RH alarm set point				
HA enc Temp	Displays encoder temp.	Not Active			
	Indicate if the close cycle				
Closed cycle cooler Fail (Blue LED)	cooler is running.				
Volt Meter & Turn nob	L				
Focus	View focus position		v		
Collimate x 2	View collimate position.		Ý		
	View counter weights		ľ		1
counterweights x 6	position		Y		
MCC Pwr x 4 (+5, +15, -15, +24)	View for MCC power		N		
	View counter weights				
counterweights (14, 15, 16, 17)	position		Y		
Lower Left Button					
	Turns brake on/off. LED on				
Brake Toddle & LED	is brake on.				
	Must press enable to				
Brake Enable	Toggle Brake on/off				
Floor lights Fl. Dome LTS	Dome light -incandesent Dome light - fluorescents				
FI. Dome LTS					
Serv. Override	Allow limit switch override for daycrew				
Serv. Overnide	Control mirror support				
	compressor w/ LED				
	indicator. Need to be at				
Mirron SPT on/off	zenith to change value.				
	Open close mirror covers				
	w/ LED indicator. Need to				
	be a zenith to change				
Mirror CVR Open/close	value.				
LIMITS					
	LED to indicate Telescope				
Zenith LED	is near zenith.				
	Yellow = slow to track				
N, S, E, W LED. 2 Led each. Slew	speed; Red = Stop TCS movements				
Limit (yel). Stop(red). Horizon Limits override 1	2 horizon limit LED and an				
Horizon Limits override 2	override				
	0101100				
Observer's Platform					
Slew Limits - UP					
Slew Limits - W					
Slew Limits - E	George K. indicated these				
Travel Limits - UP	LED indicators are not		 		
Travel Limits - DN	operational. Except that				
Travel Limits - W	left most LED indicated		 		
Travel Limits - E	"Platform Not Stowed"				
Lower Right Switches			I		
	Select either 1-6 or 14-17				
Coarse Enable	counterweight control.				
Focus - in / out hold-switch	Focus control for chopping		1		
Focus - fast / slow switch	secondary.				
Collimate N/S hold-switch	Collimation control for				
Collimate W/E hold-switch	chopping secondary				
Counterweights					
Yoke - H - in/out - 1 or 14 - hold-switch + LED			I		
Yoke - H - in/out - 1 or 14 - hold-switch + LED Yoke - V1 - up/down - 2 hold-switch + LED	ł		I		
Yoke - V1 - up/down - 2 hold-switch + LED Yoke - V2 - up/down - 3 hold-switch + LED	ľ		i		
					1
Tube - H - up/dn - 4 or 15 - hold-switch +LED	Control outlet t				
	Control switches to move				
Tube - V1 - up/dn - 5 or 16 - hold-switch + LED	the counter weights. Note you should only move				
Tube - V2 - up/dn - 6 or 17 - hold-swich + LED	you should only move weight at a time.		I		
Let the speed of or the Addression FEED	Enable / disable counter	.	i		1
Enable/disable swich + LED	weight control				

MCC3 Functional Description Table

6.4 Staff Input

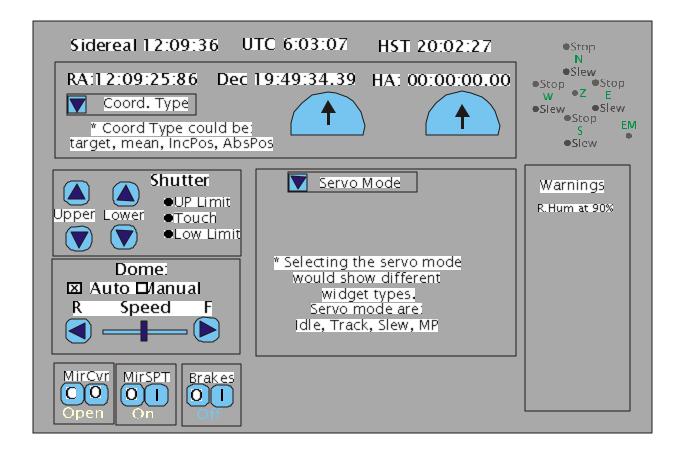
6.4.1 David Griep

Need to move the Telescope to Zenith (with eyeball accuracy) independent of computer control. Need to move the dome independent of computer control. Need to move the shutter independent of computer control.

For new TO Pannel, use a single RA and DEC joy stick. Need Floor light on TO panel for Emergency.

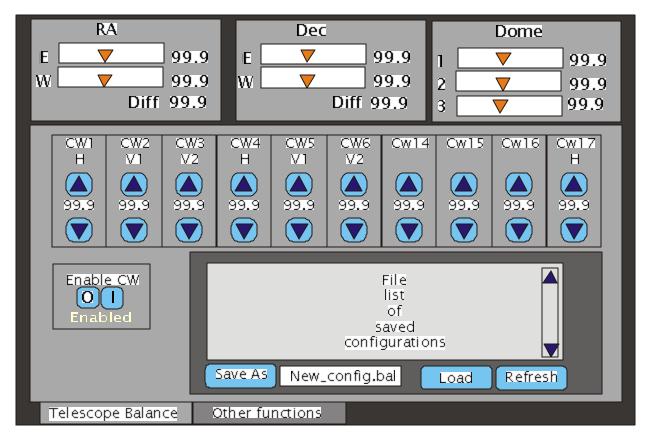
6.5 TCS3 MCC replacement

The MCC3 MCC replacement will visually consist of 2 computer monitors and a TO Panel. Normally the TCS3 computer will be booted up and running at all times. The TCS3 computer will have 2 monitors, in each monitor a GUI window will access to the various MCC functions. The TO Panel will be a hardware panel with controls and indicators to directly control the TCS3 electronics.


The tcs1 and tcs3 system will coexist for approximately 1 year. Since space is extremely tight in the TO area, the TCS3 MCC replacements need to be compact. While the tcs1 and tcs3 systems coexist, the TCS3 displays and TO panel may be located just in front of the current MCC panels.

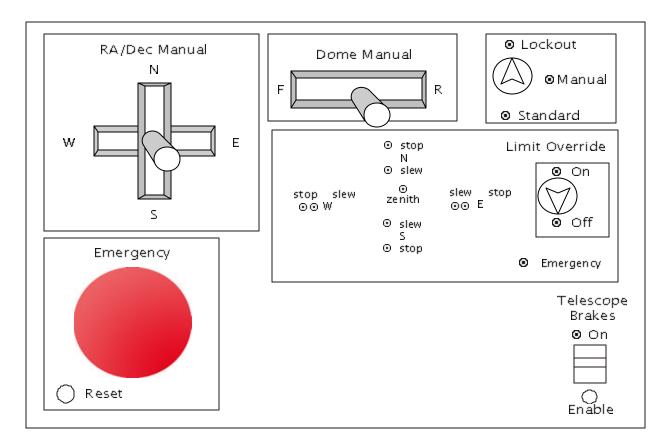
6.6 Prepare TO area for new MCC Displays and TO Panel

Some effort will made to improve the TO area to better accommodate the MCC displays and TO panel. Most likely, we will replace the folding table the TO's use for Max with a larger (real) table, and improving the equipment organization near the current MCC.


6.7 TCS3 Display 1

TCS3 Display 1 will concentrate on items directly related to the RA, Dec, and Dome servos. It provides functions similar to MCC2. Below is an illustration of what this display could look like.

6.8 TCS3 Display 2


TCS3 Display 2 sill concentrate on items that are peripheral to the TCS – Facility control and monitoring. It provides functions similar to MCC3. Below is an illustration of what this display would look like.

In the above example, the current are always displayed. Below the RA, DEC, and Dome current widgets, tabs would allow selection of various screen formats. Each tab could be related to a TCS task. This example displays the balance tab.

6.9 TO Panel.

The TO panel is hardware panel with critical indicators and controls. Ideally it would be about the size of a computer monitor (16"x16"x 10"). It would be physically attached to the TCS3 electronics rack with a cable long enough to be easily positioned and moved around in the TO's area.

TCS Electronic Modes

Lockout – disables any movement to Ra, Dec, Dome motors. Manual – Allow for manual velocity using the velocity joysticks. Standard – Computer control of RA, Dec, Dome velocity is the standard operating mode.

Slew Limits

Each axis displays the slew and stop limits. Emergency LED on if brake limit are on. Limit Override switch makes TCS electronics to ignore limit inputs (slew, stop, brake).

TCS brakes – switch to turn on/off. Must use enable button to accept changes. Emergency Stop – Pressing will disable all velocity and set telescope brakes.

6.10 Cost Estimate

During the Lab development (Sept 03 – Mar 04) a prototype TO panel will be developed.

Apr-Jun 2004, the actual MCC2 panels (summit and lab) will be machined.

Desc	Qty	Pr	ice	Subtotal	
Equipment Cost					
Case		3	1000	3000	
Improve TO area for new MCC					
equipment				10000	
Electronic components (plus spares)		5	2000	10000	
Shop Labor		120	75	9000	
misc supplies (cables, etc)		1	1000	1000	
				0	
					33000
					0
				Total	33000

7. Facility IO

The Facility IO refers to facility monitoring and control outside of the core TCS control (HA, Dec, Dome servos). We have compiled a list of the current facility IO, and are summarized in the following table.

Туре	Estimate Count
Digital Input	34
Digital Out	40
Analog Input	22
Analog Output	0
Others	serial(1)

Our Facilty IO list is located at: http://irtfweb.ifa.hawaii.edu/~tcs3/systems/tcs3/0306_conceptual_design/07_FacilityIO

We have established the following Facility IO requirements:

- 10 Hz update rates
- Additional IO can be easily added.
- Widely used in Industrial Automation
- Wide variety of the IO options.
- Ethernet based interface

7.1 Opto22

We have selected the Opto 22 (<u>www.opto22.com</u>) SNAP Ultimate IO to be used for the Facility IO hardware. These devices are similar to products such as Advantech's ADAM-5000/TCP and SixNet Industrial IO. They all consist of a proprietary bus that can accept a series of IO modules. Control and communication is performed from a control unit. Opto22 had the best balance of available IO module, software support, vendor technical support, and cost.

The Opto 22 unit consist a Module Rack (~4.5"x15"), controller unit ("Brain"), and up to 16 IO modules. Each IO module can have 4 IO points (64 IO per points per rack).

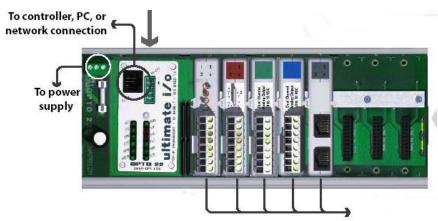


Figure 1 – SNAP module, with brain and IO modules.

The T3 Electronic Rack will house 3 or 4 Opto22 units that will handle the bulk of the IO requirement. An additional Opto22 unit is required for the new shutter JBox interface.

T3 Rack:	3 unit x 64 points = 192 points.
Shutter :	1 unit
Lab:	1 test units
Spare:	1 unit.

7.2 Estimate cost

Description	Quanity	Price		Subtotal	
Mounting Racks	7		200	1400	
Power Supply	7		200	1400	
Brain	7		700	4900	
Estimated Module cost	96		112	10752	
					18452
Misc Supplies	2000		1	4000	
					4000
				Total	22452

Estimate includes 4 TCS3 unit, 1 lab units, 1 dome unit, and 1 provisional.

8. Software Design

8.1. Notes on computer variables, their ranges and precision.

These values were obtained using solaris 2.6 on SPARC Iii, gcc version 2.7.2.

Туре	Bits	Signed Range	Unsigned Range				
Char	8	-128 to 127	0 to 255				
Short	16	-32768 to 32767	0 to 65535				
Long	32	-2147483648L	0				
		2147483647L	4294967295U				
Long Long	64	-9223372036854775808L	0				
		9223372036854775807L 18446744073709551615UL					
Float	32	23 significant bits in mantissa, 6.92369 significant digits in decimal number.					
Double	64	52 significant bits in mantissa, 15.6536 significant digits in decimal number.					

Positions can be stored in double as radians. 360 degrees = 2.683185307 radians. At 15 significant digits, the resolution is better that 5 nanoarcseconds.

Time can be stored in double as Modified Julian days. MJD has 5 decimal digits, leaving 10 fractional significant digits. This gives accuracy to better that 10 microseconds. For the TCS to 1ms accuracy is sufficient.

8.2. Notes on Limits.

Base Position:

	AS	Radians
RA	0 to 24 hrs	0 to 2*PI
Dec	-90 to 90 deg	-PI/2 to PI/2
Base Rate limits	_	
Base increment limits		

Offset

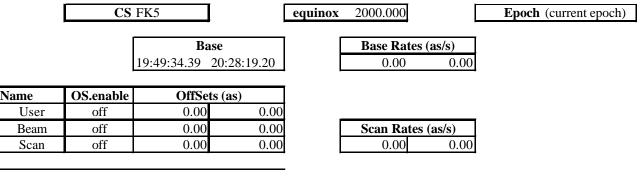
	AS	Radians
Individual Offset Limits		
Individual Rate Limits		
Total Offset Limit		
Total Rate Limits		

Servo Position Limits:

		HA Axis				Dec Axis				
	hh	mm	sec	Radians	ArcSec	deg	mm	sec	Radians	ArcSec
Servo Limit min	-5	i 4	47.00	-1.329868168	-274305.00	-59	0	0.00	-1.029744259	-212400.00
Servo Limit Max	5	5 4	47.00	1.329868168	274305.00	69	56	0.00	1.220566924	251760.00
				2.6597363	548610				2.25031118	464160.00

TCS3 Conceptual Design

Servo Velocity / Acceleration Limits


	RA (HA) A	xis	DEC Axis	
	ArcSec	radians	ArcSec radians	
Track Velocity (max)	400	0.00193926	400	0.00193926
Track Acceleration (max)	1200 0.00581776		1200	0.00581776
Slew Velocity (max)	1200	0.00581776	1200	0.00581776
Slew Acceleration(max)	1200	0.00581776	1200	0.00581776

8.3. General Software Guidelines

- Development and deployment on a Linux OS/x86 system.
- All application written in C minimize the use of other computer languages.
- Astronomy calculations algorithms are done using slalib or TCSpk.
- Pointing correction to be based on the TPOINT software application.
- GUI is written using GTK+
- Use the POSIX API for system and clib calls, shared memory, message queues, scheduling and processing control.
- Berkeley Socket API and remote procedures call (RPC) are used for network libraries.

8.4. Position Table

During normal operation (Tracking) the TCS position is indicated by the position table. Here is an illustration of the information for the position table.

 Target
 19:49:34.39
 20:28:19.20

CS is the Coordination System, which can be FK5, FK4, and Apparent.

Equinox is the equinox of the coordinate system.

Epoch is set to the current date.

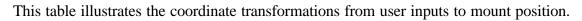
Base is the RA, Dec position.

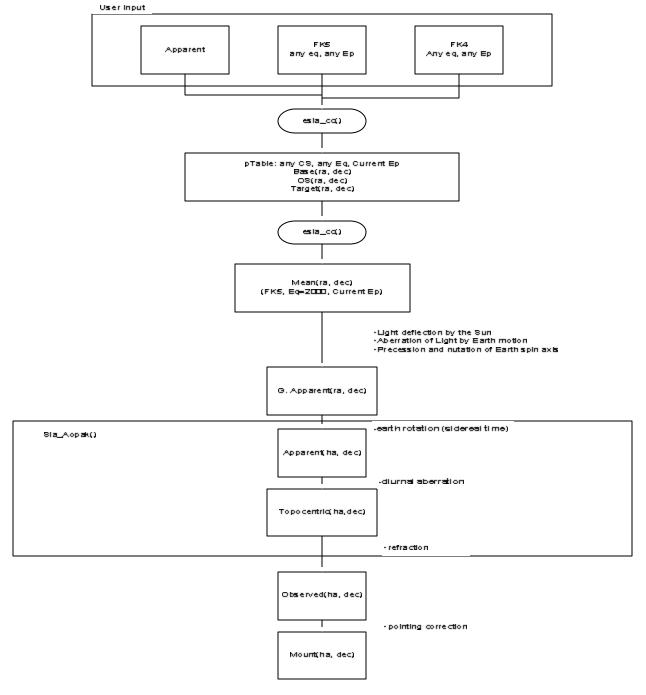
Base position can have a rate.

There are 3 offsets (User, Beam switch, Scan)

Scan can be controlled using commands like:

Scan.go ra, dec ra_rate dec_rate


The target equals Base + Offsets.


Other implementation Notes:

TO request 3 next buffer: TO, obs, cat Base command limited to +/- 3600 as from current base. Slew command allows any base value to be entered (within telescope range of course).

TCS3 Conceptual Design

8.5. Mean to Mount Calculations

8.6. Pointing Correction

The pointing correction will be based on TPOINT. Information on TPOINT can be found at www.tpsoft.demon.co.uk

The following TPOINT terms will be supported.

IH - Index Error in Hour Angle
ID - Index Error in Declination
NP - HA/Dec Non-perpendicularity
CH - East-West Collimation Error
ME - Polar Axis Misalignment in Elevation
MA - Polar Axis Misalignment in Azimuth
FO - Fork Flexure
HA - Centering Error, Sine Component
DCES - Dec Centering Error, Sine Component
TF - Tube flexure (sine)
TX - Tube Flexure (tangent)

8.7. RA, DEC Servo Modes - The following RA, Dec servo mode will be implemented.

Idle – No active servo control being performed.

Time information is calculated. Velocity of all motors (ra, dec, dome) will be set to 0. Encoder are read and a reverse mount->Target positions are calculated. All rates & Offset parameters are set to 0.

Track – Track based on the Target position from Position Table.

Time information is calculated. Rates are applied to base and offsets. Coordinates transformation Target RA,Dec -> mount are calculated. Servo task will command motors to this position.

Slew- High speed move to Target position from Position Table.

Same as track, but increase velocity limits from 400 ac/s to 1200 as/s.

Motor Position - Point to point motor using axis coordinates.

Time information is calculated. Encoder determines telescope position Reverse transformation mount->Target is calculated. Motor velocity can be specified.

Motor Velocity – Jog type motor command.

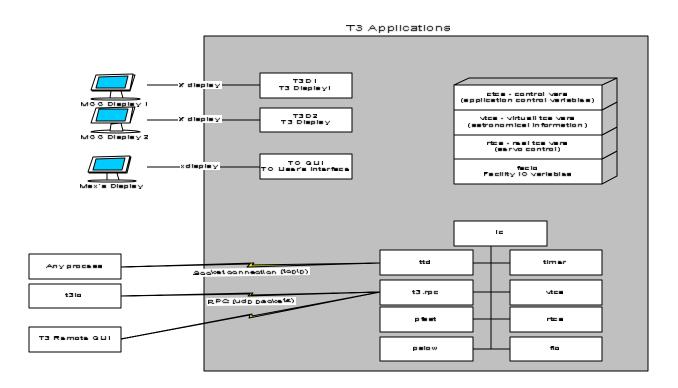
Time information is calculated. Encoder determines telescope position. Reverse transformation mount->Target is calculated. Motor velocity can be specified.

8.8 Dome servo modes. The following Dome servo mode will be implemented.

Manual - Operator can increment or decrement dome position.

Auto - Dome will track the Azimuth of the TCS, and auto position the dome.

8.9 Shutter


Shutter control / feedback will be the same are the current system.

8.10 Facility communications

Communication to TCS3 will be done using TCP/IP and/or UDP. Communication based on a 'serial line interface' method - text command and replies using a simple command language.

A socket based terminal IO should is one option to connect to the tcs3. This is a stream based network socket. The full command set will be supported over the TCP/IP link. Multiple telnet sessions into the TCS will be supported.

An RPC daemon will support UDP type commands/queries. This will provide a limited command set. Very verbose and interactive commands will be disabled. However, this connect-less protocol will support a higher rate of exchange and much quicker individual performance.

8.10 TCS3 Application Block Diagram

9. TCS1-TCS3 Switching

We need to switch between TCS1 & TCS3 to driver the RA, Dec, and Dome servo systems. The switch back fairly quickly and easily. This will enable daytime test runs and night time engineering with using TCS3, while keeping TCS1 operational.

The new encoders and the replacement MCC (using computer display) should be operational by this point in the project. This should minimize the number of signals to be switched.

This task should be fairly straight forward, not posing any great technical challenges. At the required time we will survey the signals to be switched, purchase or build the necessary hardware, and install them.

9.1 Shutter Controller

The JBox for the shutter IO interface needs to be changed. The current JBox communicates over the slip ring using the tone modem equipment. We wish to decommission the tone modem equipment.

The new JBox will be connected directly to a Opto22 device. This opto22 will connect to the network using the Shutter hub installed as part of the IQUP project. This Hub is connected to the IRTF Lab using X10 device to traverse the slip rings.

9.2 Schedule and Budget

Tcs1-tcs3 switching is scheduled for Jul-Oct 04 (4 month). The achieved milestone is to have the T3 system drive the HA, Dec, and Dome successfully. The shutter control will be transferred to the new MCC.

We allocated \$20K for the tcs1-tcs3 switching and shutter control hardware.

10. T3 Remote GUI

The T3 Remote GUI is a scaled down graphical interface for the TCS to be used by:

- Summit Observers
- Remote Observers
- Day Crew (or by anyone running the TCS away from the TO area).

This application will displace the need for a custom hardware panel. Advantage of using a software GUI vs. Hardware panel are:

- No custom Hardware to purchase and maintain
- No custom software (embedded OS, tool, application) needed.
- Additional expertise required for customized solution is not needed.
- Software GUI is easily to modify and maintain.
- Application runs on a generic portable computer.

The close example to our RemoteGUI would be the tcs1_status application current being used at the IRTF. The T3 RemoteGUI would support additional function, quicker response due to the improved network communication infrastructure provide by the TCS3

Figure 10.1 – Current tcs1_status application

10.1 Cost Estimate

2 laptop X \$3K = \$6K

11. Remove TCS1

Once the T3 is accepted as the operational TCS, TCS1 can be removed. The following major tasked are identified:

- Remove TCS1 Equipment including MCC panel.
- Remove TCS1-TCS3 switching equipment.
- Implement final configuration of the encoders.

\$15 K has been reserved in the budget for any final task associated with removing the old TCS.