StarCat

IRTF Star Catalog Application

User’s Guide

Table of Contents

1. What is STARCAT? ... 2

2. Setting up your user account .. 2

3. Starting STARCAT .. 3

4. Main Catalogs Search Options ... 3

 4.1 About the Radius Parameter ... 4

5. Main Catalog Display options .. 5

6. User List .. 6

 6.1 How to load your object list: ... 6

 6.2 Other User List functions: ... 6

7. SkyMap Panel ... 6

8. Setup Panel .. 9

9. User List Text Format - The User List supports 2 text formats. .. 10

 9.1 New_Format .. 10

 9.2 Old_Format ... 10

Appendix A – Dictionary of Commands ... 12
1. What is STARCAT?

The STARCAT software is a tool used to search star catalog files. Its 2 main functions are to provide Main Catalogs and manage the User List:

Main Catalog – There are numerous standard astronomical catalog available. User can specify a search coordinates and starcat will search the indicated catalogs and list the nearby stars.
User List – User can load their object list (a text file of objects) into the user list window.

Startcat can send slew request to the TCS using these catalogs lists, and query the TCS for its position for new search coordinate. These catalog lists can be viewed in a variety of formats, and sorted based on different fields. Starcat calculates the observed positional information on all listed objects. Is also display a diagram of the sky showing where the stars are located related to the IRTF’s view of view.

If you have questions or comments concerning STARCAT, you may contact the author of the software via email at denault@ifa.hawaii.edu or by calling the IRTF. The starcat home page is at http://irtfweb.ifa.hawaii.edu/~tcs3/starcat/.

The current version of starcat is StarCat4

2. Setting up your user account

When STARCAT starts up, it read the file ~/.starcat-init in your home directory. Using a text edit, you can customized STARCAT using commands from Appendix A. For example, the file may contain the following instructions to set the search radius, and load the user catalog from the user’s home directory.

If this file exist, STARCAT expects it to contain STARCAT commands. See the STARCAT Command Dictionary for the syntax. Using a text editor you can place instructions in this file to configure when STARCAT starts up. Here an example of a .starcat-init file:

guider none
mainsort Ang.Offset
catalog.clear
catalog.set nomad
SkyMap.ShowSmokey on
3. Starting STARCAT

STARCAT is installed in all IRTF observing workstation. Type ‘starcat’ on your terminal start it. Many observing desktop may have a STARCAT icon for you to use.

When starcat stars this window should appear on your screen:

![The Base Window](image)

Figure 3.1 – The Base Window

4. Main Catalogs Search Options

These widgets allows you to search the Main Catalogs (HR, FK5, HD, ..) for data.
First select the catalog you wish to search, and insure the Radius is correct. You have 3 options as indicated by the 3 search buttons:

Search TCS – Starcat will query the TCS, update the RA/DEC field with the TCS’s position, and perform a search on this position.

Search RA/DEC – First enter the coordinates in the RA/DEC text fields. Press this button to search the entered RA/DEC position.

Search Item - if you have catalog data loaded in the Main or User catalog list. You can highlight an entry and use that position as your search position. After highlighting a catalog entry, click the **Search Item** button.

Below the list of star is **Search Index**.

Enter the Numeric ID for the star to find a particular star, for example, to find SAO_45859 enter 45859. For SA stars, the enter 4 digit for each NNN-NNN part, ie SA-35-535 would be “00350535”. GSC, 2MASS, and NOMAD are not supported.

4.1 About the Radius Parameter

Search will look for star at the FK5 J2000.0 search coordinates. Stars within the search radius will be placed in the main catalog. The Radius has 2 widget associated with it. The text field and pull down menu.

The pull down menu has selection which determine is the radius is automatically. The options are:

- Off-axis – The radius is set to the field of view of the off-axis camera (350 arcseconds).
- Cshell – The radius is set to the field of view of the cshell guider (90 arcseconds)
- None – When set to none, the radius is set to the minimum suggest value of all the selected catalogs. The minimum values are:

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Minimum Suggest Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>18000 arcseconds or 5 degs</td>
</tr>
<tr>
<td>FK5</td>
<td>36000 arcseconds or 10 degs</td>
</tr>
<tr>
<td>HD</td>
<td>2500 arcseconds, or 0.7 degs</td>
</tr>
<tr>
<td>SAO</td>
<td>3600 arcseconds, or 1 degs</td>
</tr>
<tr>
<td>HIP</td>
<td>7200 arcseconds, or 2 degs</td>
</tr>
<tr>
<td>PPM</td>
<td>7200 arcseconds, or 2 degs</td>
</tr>
<tr>
<td>FS</td>
<td>108000 arcseconds, or 30 degs</td>
</tr>
</tbody>
</table>
SA 36000 arcseconds, or 10 degs
GSC 540 arcseconds, or 0.15 degs
2MASS 900 arcseconds, or 0.25 degs
nomad 350 arcseconds (offaxis guider FOV).
5. Main Catalog Display options

Clicking on the **Catalog** tab will display the Main Catalog Panel.

<table>
<thead>
<tr>
<th>Sort:</th>
<th>Ang. Offset</th>
<th>Format:</th>
<th></th>
<th></th>
<th>Send To TCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADec</td>
<td>01:56:29.0 19:18:47.5 PM</td>
<td>75.30 63.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hα</td>
<td>06:11:51.59</td>
<td>AirM=12.158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltAz</td>
<td>(3.8,289.3)</td>
<td>Spectype</td>
<td>G5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier: SAO 92706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MeanRA</th>
<th>MeanDec</th>
<th>Mag0</th>
<th>Mag1</th>
<th>Spectype</th>
<th>RaOff</th>
<th>DecOff</th>
<th>AirM</th>
<th>G</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:56:29.0</td>
<td>19:18:47.5</td>
<td>9.0V</td>
<td>7.9J</td>
<td>G5</td>
<td>+150as</td>
<td>-150as</td>
<td>12.158</td>
<td>SAO 92706</td>
<td></td>
</tr>
<tr>
<td>01:57:14.0</td>
<td>19:16:37.7</td>
<td>8.8V</td>
<td>7.1J</td>
<td>G5</td>
<td>+793as</td>
<td>-1635as</td>
<td>11.894</td>
<td>SAO 92719</td>
<td></td>
</tr>
<tr>
<td>01:54:49.1</td>
<td>20:17:03.6</td>
<td>9.2V</td>
<td>8.0J</td>
<td>F8</td>
<td>-1253as</td>
<td>+1990as</td>
<td>12.224</td>
<td>SAO 75015</td>
<td></td>
</tr>
<tr>
<td>01:53:47.0</td>
<td>19:18:08.7</td>
<td>8.5V</td>
<td>6.7J</td>
<td>K</td>
<td>-2130as</td>
<td>-1545as</td>
<td>13.080</td>
<td>SAO 92664</td>
<td></td>
</tr>
<tr>
<td>01:53:31.8</td>
<td>19:17:46.3</td>
<td>4.7V</td>
<td>4.7K</td>
<td>AOVmp-1</td>
<td>-2344as</td>
<td>-1568as</td>
<td>13.149</td>
<td>SAO 92680</td>
<td></td>
</tr>
<tr>
<td>01:53:31.8</td>
<td>19:17:39.7</td>
<td>4.5V</td>
<td>4.7K</td>
<td>A21VpSi</td>
<td>-2344as</td>
<td>-1575as</td>
<td>13.150</td>
<td>SAO 92681</td>
<td></td>
</tr>
<tr>
<td>01:57:32.2</td>
<td>18:59:29.1</td>
<td>8.8V</td>
<td>8.0J</td>
<td>F2</td>
<td>+1050as</td>
<td>-2665as</td>
<td>11.944</td>
<td>SAO 92722</td>
<td></td>
</tr>
<tr>
<td>01:57:09.5</td>
<td>18:57:32.2</td>
<td>9.7V</td>
<td>7.4J</td>
<td>K7</td>
<td>+730as</td>
<td>-2782as</td>
<td>12.106</td>
<td>SAO 92717</td>
<td></td>
</tr>
<tr>
<td>01:58:16.4</td>
<td>20:25:57.0</td>
<td>9.1V</td>
<td>8.2J</td>
<td>G5</td>
<td>+1675as</td>
<td>+2523as</td>
<td>10.852</td>
<td>SAO 75057</td>
<td></td>
</tr>
<tr>
<td>01:52:50.2</td>
<td>19:46:09.7</td>
<td>8.9V</td>
<td>7.1J</td>
<td>G5</td>
<td>-3214as</td>
<td>+136as</td>
<td>13.218</td>
<td>SAO 92670</td>
<td></td>
</tr>
<tr>
<td>01:52:47.0</td>
<td>19:22:23.7</td>
<td>9.1V</td>
<td>7.2J</td>
<td>KO</td>
<td>-2965as</td>
<td>-1290as</td>
<td>13.282</td>
<td>SAO 92672</td>
<td></td>
</tr>
</tbody>
</table>

This tab displays the search results from the main catalogs. When you select a star from the list, more detailed information about his object is displayed just about the list. Using you mouse you can highlight/copy information for input into other applications (ie, SIMBAD data searches).

Sort menu – Specifies the sort field for the object list.

Format menu – Specifies the text format for the object list.

Sent To TCS button – Sends the highlighted object’s coordinates to the TCS

Show button – prints the list to standard output.

Clear button – clears the object in the main catalog list.
6. User List

Clicking on the **Userlist** tab will display the User List Panel.

![User List Panel](image)

6.1 How to load your object list:

Enter the name of your user list file (the example shows userlist.txt).
Select the format you are using on the menu next to the filename text entry (new or old format).
Select the **Load** button.

6.2 Other User List functions:

- **Sort** menu – Specifies the sort field for the object list.
- **Format** menu – Specifies the text format for the object list.
- **SentToTCS** button – Sends the highlighted object’s coordinates to the TCS.
- **Show** button – prints the list to standard output.
- **Clear** button – clears the object in the main catalog list.

7. SkyMap Panel
Clicking on the **SkyMap** tab will present the skymap panel. The SkyMap displays a drawing of the main catalog stars centered on the search coordinates.

The Star Data box on the left will display relevant data based on the mouse cursor position. When positioned on a star, details of the star is displayed.

The **Legend** box at the left of the coordinate system displays the current magnitude legend. This legend can be used to visually estimate the magnitude of stars shown in the skymap.

ColorsStars – this checkbox switches the legend from a grayscale to a colored scale.
ShowName – When checked, the names of the stars are display in the starmap.

DSS Window – Pressing the DSS Window button will instruct stacat to download a DSS image and display in it a dialog window. This DSS FOV is fixed at 12 arcmin, it is intended to display the star within the smokey offaxis guiding area to help the TO select an offaxis guide star. *Note: It may take from 5 to 10 seconds for the DSS window to appear or update, as the image are queried from the DSS server.*

Note: Controlling the XYStage should only be done by the Telescope Operator.

If **ShowSmokey** is enabled, the **Smokey** box (center-right) will display information relevant to the x-y stage and the POM. The **XYstage** and **POM** fields display the positions of x-y stage and POM, respectively. The cyan box show the current located of the smokey’s mirror/POM. Clicking on the mouse will move the Magenta “+”. This “+” show the destination for the POM with the **XYState.offset** button is pressed.

XYStage.offset – Move the x-y stage to the destination RA and DEC.
POMSync – Toggle whether the POM should sync with the XYStage when moved.
ShowSmokey – Toggle advanced Smokey controls.

Here is a screen shot of the SkyMap and DSS window.
8. Setup Panel

Clicking on the setup tap will present the setup panel. This panel simply displays the value of some starcat parameters and variables.

<table>
<thead>
<tr>
<th>Time Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC</td>
</tr>
<tr>
<td>2017/08/01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
</tr>
<tr>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Lapse</td>
</tr>
<tr>
<td>Latitude</td>
</tr>
<tr>
<td>Longitude</td>
</tr>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>TempK</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SkyMap Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer Select</td>
</tr>
<tr>
<td>VirTime UTC</td>
</tr>
<tr>
<td>SkyMap ColorStars</td>
</tr>
<tr>
<td>SkyMap ShowNames</td>
</tr>
<tr>
<td>SkyMap ShowMobjkey</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

NOMAD Mag. limit=18.0 NOMAD root=/starcatalogs4/nomad

IRTF StarCat4 Version 17.08. Compiled on Aug 1 2017.Gtk+ 2.24.23
Window: 694x594 Font: 7.8x14.0 Text: 99x36

9.1 New_Format

This is the text file format for importing user's list. Each line describes an object. The column data is separated a white space (any combination of spaces and tabs).

<table>
<thead>
<tr>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Index</td>
<td>Numeric index of catalog</td>
</tr>
<tr>
<td>2</td>
<td>Name</td>
<td>Name as a string, max 30 chars (no blanks)</td>
</tr>
<tr>
<td>3</td>
<td>Right Ascension</td>
<td>hh:mm:ss.ss</td>
</tr>
<tr>
<td>4</td>
<td>Declination</td>
<td>dd:mm:ss.ss</td>
</tr>
<tr>
<td>5</td>
<td>Epoch/Equinox</td>
<td>1950.0 assumes FK4, Otherwise FK5. Default to 2000.0</td>
</tr>
<tr>
<td>6</td>
<td>RA Proper Motion</td>
<td>s.ssss in seconds of time/year. Defaults to 0.</td>
</tr>
<tr>
<td>7</td>
<td>Dec Proper Motion</td>
<td>a.aaaaa in second of arc/year. Defaults to 0</td>
</tr>
<tr>
<td>8</td>
<td>Spectra Type</td>
<td>7 chars max. Defaults to ‘n/a’</td>
</tr>
<tr>
<td>9,10</td>
<td>Mag[0] value & type</td>
<td>m.mmm. Default to ‘0’ and ‘-‘ if not given.</td>
</tr>
<tr>
<td>10,11</td>
<td>Mag[1] value & type</td>
<td></td>
</tr>
<tr>
<td>12,13</td>
<td>Mag[2] value & type</td>
<td></td>
</tr>
<tr>
<td>14,15</td>
<td>Mag[3] value & type</td>
<td></td>
</tr>
</tbody>
</table>

Lines beginning with ‘#’ are comment lines.

Here is an example:

```
#Index  Name______ __RA____    ___DEC____  Epoch_ RaPM DecPM   _ST__  Magn_0   Magn_1   Mang_2   Mang_3
# 1     IRTF-1  00:02:45.93  35:48:55.86  2000.0 0.00  -0.00 A0      7.30 V   99.90 P  0.00 x   0.00 x
  2     IRTF-2  00:15:57.26  04:15:03.75  2000.0 0.00  -0.02 A0      7.00 V   99.90 P  0.00 x   0.00 x
  3     IRTF-3  00:30:02.36 -03:57:26.35  2000.0 0.00  -0.01 K5      6.00 V   99.90 P  0.00 x   0.00 x
  4     IRTF-4  00:31:18.42 -43:36:24.78  2000.0 -0.00 -0.02 A2      7.50 V   99.90 P  0.00 x   0.00 x
```

9.2 Old_Format

This older format is the text format using by previous xstarcat and starcat version 1. Each line describes an object. The column data is separated a white space (any combination of spaces and tabs).

<table>
<thead>
<tr>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Name</td>
<td>Name of object (no blanks allowed)</td>
</tr>
<tr>
<td>2</td>
<td>Right Ascension</td>
<td>hh:mm:ss.ss</td>
</tr>
<tr>
<td>3</td>
<td>Declination</td>
<td>dd:mm:ss.ss</td>
</tr>
<tr>
<td>4</td>
<td>RA Proper Motion</td>
<td>s.ssss in seconds of time/year.</td>
</tr>
<tr>
<td>5</td>
<td>Dec Proper Motion</td>
<td>a.aaaaa in second of arc/year.</td>
</tr>
<tr>
<td>6</td>
<td>Magnitude</td>
<td>m.mmm</td>
</tr>
</tbody>
</table>
Epoch

Lines beginning with ‘#’ are comment lines.

Here is an example:

<table>
<thead>
<tr>
<th>name</th>
<th>RA</th>
<th>DEC</th>
<th>paRA</th>
<th>pmDec</th>
<th>Mag</th>
<th>epoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRTF-1</td>
<td>00:02:45.93</td>
<td>35:48:55.86</td>
<td>0.00</td>
<td>0.00</td>
<td>7.30</td>
<td>2000</td>
</tr>
<tr>
<td>IRTF-2</td>
<td>00:15:57.26</td>
<td>04:15:03.75</td>
<td>0.00</td>
<td>0.00</td>
<td>7.00</td>
<td>2000</td>
</tr>
<tr>
<td>IRTF-5</td>
<td>00:32:49.08</td>
<td>28:16:49.08</td>
<td>0.00</td>
<td>0.00</td>
<td>6.40</td>
<td>2000</td>
</tr>
<tr>
<td>IRTF-6</td>
<td>00:33:39.52</td>
<td>20:26:02.36</td>
<td>0.00</td>
<td>0.00</td>
<td>7.60</td>
<td>2000</td>
</tr>
<tr>
<td>IRTF-7</td>
<td>01:09:43.94</td>
<td>35:37:13.93</td>
<td>0.00</td>
<td>0.01</td>
<td>2.40</td>
<td>2000</td>
</tr>
</tbody>
</table>
Appendix A – Dictionary of Commands

This section describes the command set for STARCAT.

For the syntax, the following conventions are used:
Normal Courier fonts must be typed as showed.
Italic Courier fonts represent choices or values to be determined by the user.

These are further explained under the Range. Some examples:
\{off|on\} – represent a list of choice. You must select one.
[value] – the \[] represent an optional parameter.

azel – Issues a LOAD RA,DEC command using observed Az El values.
Syntax azel Az El
Range Az – Azimuth, in degrees (N=0, E=90, S=180, w=270).
 El – Elevation in degrees (0 to 90).
Example AzEl 180 85.5

Catalog.clear – Untoggles any catalog selection.
Syntax Catalog.Clear
Example Catalog.Clear

Catalog.set – Sets the toggle for a catalog by name.
Syntax Catalog.set catalog_name
Range catalog_name – can be \{bsc5, fk5, gsc, irtf, sao, ukirt, hd.sao \}.
Example Catalog.set fk5

CatFile.Inx.Path
CatFile.Name
CatFile.Ra.Path
CatFile.Radius – A set of properties are associated with each catalog: Name, Default Radius, and file paths to its RA and Index sorted files. These 4 commands allow you to set these properties.
Syntax catfile.name index name
 Catfile.radius index radius
 Catfile.inx.path index inx_file_path
 Catfile.ra.path index ra_file_path
Range index – 0-7 (8 main catalog are supported)
Name – name of catalog (any string).
Radius - in arcseconds (1 to 200000)
Inx_file_path – full pathname of index sorted catalog.
Ra_file_path – full path name of RA sorted catalog
Example
```
Catfile.name 0 bsc5
Catfile.radius 0 27000
Catfile.inx.path 0 /starcatalogs2/bsc5.catalog.inx
Catfile.ra.path 0 /starcatalogs2/bsc5.catalog.ra
```

Catalog.show – Print the catfile variable to stdout.
 Syntax: `{catalog.show}`
 Example: `{catalog.show}`

DSS – The DSS command invokes the download and display of the Digital Sky Survey image, and update the DSS window.
 Syntax: `{dss}`
 Example: `{dss}`

Echo – Prints the parameter string to the text feedback window.
 Syntax: `{echo string}`
 Range: `string` – Any message.
 Example: `{echo Hello, can you see this message?}`

Elevation – Specifies the elevation in meters above sea level of the telescope. Used to calculate airmass and observed parameters.
 Syntax: `{elevation meters}`
 Range: `Meters` – the elevation in meters.
 Example: `{elevation 4168}`

Guider – Tells starcat what guider is used. The guider affects the default search radius.
 Syntax: `{guider {off-axis | tip-tilt | cshell | none}}`
 Range: `off-axis` – The default range is 250.
 `tip-tilt` – The default range is 160.
 `cshell` – The default range is 90.
 `none` – The default radius is based on the catalog selection for searching.
 Example: `{guider off-axis}`

HaDec – Issues a LOAD RA,DEC command using observed Ha Dec values.
 Syntax: `{haDec Ha Dec}`
 Range: `HA` – Hour Angle (units of time)
 `Dec` – Declination in degrees.
 Example: `{haDec -1:00 19:50}`

Lapse – Given in Kelvin per minute. Used to calculate airmass and observed parameters.
 Syntax: `{lapse rate}`
 Range: `Rate` – rate in Kelvin/minute.
Example lapse 0.0065

Latitude – Specifies the latitude of the telescope. Used to calculate airmass and observed parameters.

Syntax Latitude deg:min:sec {N | S}

Range Deg:Min:Sec – must be 90 degrees or less north or south of the equator.

Example latitude 19:49:34.39 N

Load – Specifies the parameters for the search position.

Syntax Load ra dec [eqx] [epoch] [pm_ra] [pm_dec]

Range ra – Right Ascension (Time format)

Dec – Declination (degrees)

Eqx – equinox. Default is 2000

Epoch – Epoch. Default is equinox value.

Rapm – RA proper motion. Default is 0.

Decpm – Dec proper motion. Default is 0.

Example Load 20:34:23.4 19:49:34.39

Longitude – Specifies the longitude of the telescope. Used to calculate airmass and observed parameters.

Syntax Longitude deg:min:sec {E | W}

Range Deg:Min:Sec – must be 180 degrees or less east or west of Greenwich.

Example longitude 155:28:19.20 W

LTOffset – Specifies the universal time to local time offset in minutes. Used to calculate airmass and observed parameters.

Syntax LTOffset value

Range Value – offset in minutes (-720 to 720).

Example ltoffset -600

MainClear – Clears the Main catalog list from the main catalog display area.

Syntax MainClear

MainFormat – Specifies the data format for the main catalog.

Syntax MainFormat { Default | Obs | Mag }

Range Default – The default data format

Obs – Data format highlighting observed position information.

Mag – Data format highlighting magnitude information.

Example MainFormat Obs

MainSearchID – Searches the selected MainCatalogs for matching index or catalog ID. Matching records are loaded into the Main Catalog List.

Syntax MainSearchID ID

Range ID – Numeric ID value to search for.

Example MainSearchID 100334
MainSearchRA – Searches the selected MainCatalogs using the search parameter (mean J2000 ra, dec, and radius). Matching records are loaded into the Main Catalog List.

Syntax: `MainSearchRA`

Example: `MainSearchRA`

MainSentToTCS – Issues a C.SLEW command to the TCS using the coordinates from the selected entry in the Main Catalog.

Syntax: `MainSentToTCS`

Example: `MainSentToTCS`

MainShow – Prints the main catalog to stdout (the terminal window).

Syntax: `MainShow`

Example: `MainShow`

MainSort – Indicates the sort field for the MainCatalog.

Syntax: `MainSort { Index | RA | Dec | Mag | Ang.Offset | RA.Offset | Dec.Offset | Airmass | Name | HA | Alt | Azi }

Example: `MainSort RA`

NewEntryPos – Loads a new search position by reading the XUI input widget for RA,DEC, Equinox, and Epoch.

Syntax: `NewEntryPos`

Example: `NewEntryPos`

NewEntryPos – Loads a new search position by reading the XUI input widget for RA,DEC, Equinox, and Epoch.

Syntax: `NewEntryPos`

Example: `NewEntryPos`

NewItemPos – Loads a new search position by reading the highlighted object in the current Catalog or UserList tab.

Syntax: `NewItemPos`

Example: `NewItemPos`

Nomag.mag.limit – Set the faint magnitude limit for the nomad catalog searches.

Syntax: `NOMAD.Mag.Limit mag`

Range: `mag` – the faint magnitude limit. Range is 0 to 29.

Example: `NOMAD.Mag.Limit 18.5`

Nomag.mag.root – Tell starcat where the NOMAD catalog files are.

Syntax: `NOMAD.Mag.Root dir`

Range: `dir` – the directory where the NOMAD files are located.

Example: `NOMAD.Mag.Root /starcatalog3/nomad`

OutTab – Select the (output) tab for the display window.
Syntax | OutTab \{ catalog | userlist | skymap | setup \}
---|---
Range | \{ catalog | userlist | skymap | setup \}
Example | OutTab catalog

POM.getOffset – Retrieves the POM offset by querying smokey.

Syntax | POM.getOffset()

Example | POM.getOffset

POM.Sync – Toggle whether the POM should synchronize its position with that of the x-y stage. The synchronization occurs only after using **XYStage.offset**.

Syntax | POM.Sync \{ on | off \}

Example | POM.Sync on

PosFromTCS – Loads a new search position by querying the TCS for its position.

Syntax | PosFromTCS

Example | PosFromTCS

Pressure – Specifies the atmospheric pressure at the telescope. Used to calculate airmass and observed parameters.

Syntax | Pressure value

Range | Value – pressure in mBars (200 to 2000).

Example | pressure 650

Quit – Exits the STARCAT program.

Syntax | Quit

Radius – Sets the search box size. The number given is the “radius” of the box.

Syntax | Radius value

Range | Value – radius in arcseconds.

Example | radius 400

RHumidity – Specifies the relative humidity at the telescope. Used to calculate airmass and observed parameters.

Syntax | RHumidity value

Range | Value – relative humidity (0.0 to 1.0).

Example | rhumidity 0.10

SkyMap.ColorStars – If ON uses color for display skymap stars, else a gray scale is used.

Syntax | SkyMap.ColorStars \{ off | on \}

Range | off – Use gray scale.

On – Use color scale.

Example | SkyMap.ColorStars on
SkyMap.showID – Indicate if the ID value should be display on the skymap display.

Syntax
SkyMap.showID { off | on }

Range
off - Do not display ID.
On - Display the ID value.

Example
SkyMap.showID on

TCS – Sends a command to the TCS.

Syntax
TCS command

Range
Command – the TCS command to be sent.

Example
tcs 0:00:00 0:00:0 0.0000 0.000 2000.0 C.SLEW

TCSHostname – Identifies the host used to handle communications to the TCS.

Syntax
TCSHostname host

Range
Enter a valid hostname

Example
tcshostname vtcshost

TempK – Specifies the temperature at the telescope in Kelvin. Used to calculate airmass and observed parameters.

Syntax
TempK value

Range
Value – temperature in Kelvin (100 to 350).

Example
tempk 273.0

UpdatePeriod – Indicate the period when the catalog observed positions are updated (using the UpdatePosition command).

Syntax
UpdatePeriod sec

Range
sec - Update period in seconds.

UpdateTime – Updates the time information. This command is automatically execute every second by the starcat application.

Syntax
UpdateTime

Example
UpdateTime

UserClear – Clears the user’s catalog list from the user catalog display area.

Syntax
UserClear

UserFormat – Specifies the data format for the user list.

Syntax
UserFormat { Default | Obs | Mag }

Range
Default – The default data format
Obs – Data format highlighting observed position information.
Mag – Data format highlighting magnitude information.

Example
UserFormat Obs
UserLoad – Loads the user’s catalog file into the user catalog display area. Note there are 2 supported formats, see UserTextFmt.

- **Range** Filename – the user’s catalog list file.

Syntax

```
UserLoad filename
```

UserNewPos – Takes the coordinates from the specified user catalog display row and places the values (in J2000, current epoch) in search coordinates input fields.

- **Syntax** UserNewPos index
- **Range** Index – Row in catalog list to use as new search position (0, 1, 2,...).

Example UserNewPos 10

UserSentToTCS – Issues a C.SLEW command to the TCS using the coordinates from the selected entry in the UserCatalog.

- **Syntax** UserSentToTCS

UserSort – Indicated the sort field for the UserCatalog.

- **Syntax** UserSort { Index | RA | Dec | Mag | Ang.Offset | RA.Offset | Dec.Offset | Airmass | Name | HA | Alt | Azi }

Example UserSort RA

UserTextFmt – This parameter tell the UserLoad command the format for the text files (user list) to be loaded. Two formats are supported. See the User Guide for data format examples.

- **Syntax** UserTextFmt { textfmt2 | textfmt1 }
- **Range**
 - textfmt1 – This is the old style (xstartcat and starcat v1) text format
 - textfmt2 – starcat v2 text format.

Example UserTextFmt textfmt2

Wavelength – Specifies the observed wavelength in microns. Used to calculate airmass and observed parameters.

- **Prompt** ‘Wavelength’ text box on the Setup Options Page.
- **Range** Value – wavelength in microns (0.1 to 50.0).

- **Syntax** Wavelength value

Example wavelength 0.550

XYStage.GetOffset – Retrieves the XY Stage position from smokey.

- **Syntax** XYStage.GetOffset

Example XYStage.GetOffset

XYStage.Offset – Move the x-y stage to the specified RA, DEC position.

- **Syntax** XYStage.Offset ra dec
- **Range**

Example XYStage.Offset 64.0 32.25