Minimum energy catastrophic disruptions

D.J. Scheeres
The University of Michigan
Catastrophic Disruption Workshop
Alicante, June 2007
Angular Momentum of Small Bodies

• The rotational angular momentum of small bodies are not constant over time, due to:
 – The YORP effect
 • Sunlight shining on an irregularly shaped asteroid induces a net periodic torque that changes its spin rate and obliquity
 • Recently verified by comparing observations with theory
 – Planetary flybys
 • The tidal torques arising from the close passage of an asteroid to a planet can abruptly alter an asteroid’s spin state
 • Large changes in spin state can occur even for non-catastrophic flybys
 – Impacts
 • Sub-catastrophic impacts can impart angular momentum to a body
 • Especially common in the Main Belt
Presumed Dominance of YORP

• As YORP acts on all asteroids continuously, it should be a dominant process for < 10 km-sized asteroids
 – Rotational angular momentum can increase and decrease over time
 – Significant changes in spin state over timescales of 10K - 10M years

• There are a host of interesting questions to ask:
 – How will rubble-pile asteroids respond to this?
 – Can unchecked spin-up cause a body to disrupt into a binary?
 – Under what conditions can these binaries catastrophically disrupt?
 – What is the minimum energy for a catastrophic disruption?
 – What may happen on the way to disruption?

• For some current results, see:

 Rotational fission of contact binary asteroids

Minimum Energy Configurations

- Consider a spinning asteroid with all of its components at rest with respect to each other

- Energy: \[E = \frac{1}{2} \omega \cdot I_0 \cdot \omega + \mathcal{U}_{00} \]

- Angular momentum magnitude: \[K = |I_0 \cdot \omega| \]

 \(\omega = \) Angular velocity

 \(I_0 = \) Inertia matrix of body

 \(\mathcal{U}_{00} = \) Self-gravitational potential

\[\mathcal{U}_{00} = -\frac{G}{2} \int_{B_0} \int_{B_0} \frac{dm_1 dm_2}{|\rho_{12}|} \]

D.J. Scheeres, Associate Professor of Aerospace Engineering, The University of Michigan
Minimum Energy Configurations

As spin rate increases or decreases, an aggregate can be placed into a non minimum energy state.

\[(K_0, E_0) \]

\[(K_1 = K_0, E_1 < E_0) \]

A perturbation can trigger a shape change, conserving AM, decreasing energy, and dissipating excess energy via friction and seismic waves.
To test this idea, consider the minimum energy configurations of a sphere/ellipsoid system of arbitrary mass fraction ν

$$\nu = \frac{M_{\text{Sphere}}}{M_{\text{Sphere}} + M_{\text{Ellipsoid}}}$$

Minimum energy configuration for K small

Minimum energy configuration for K large
(n,m) definition

n = ellipsoid axis sphere rests on

m = ellipsoid axis system rotates about

(Icarus, in press)
Fission

- If AM continues to grow, the largest components of the system may “fission,” i.e., enter orbit
- Energy and AM can be conserved, but are decomposed:
 - Kinetic Energy
 \[
 \frac{1}{2} \omega \cdot I_0 \cdot \omega = \frac{1}{2} \omega \cdot I_1 \cdot \omega + \frac{1}{2} \omega \cdot I_2 \cdot \omega + \frac{1}{2} \frac{M_1 M_2}{M_1 + M_2} (R \omega)^2
 \]
 - Potential Energy
 \[
 \mathcal{U}_{00} = \mathcal{U}_{11} + \mathcal{U}_{22} + \mathcal{U}_{12}
 \]
 - The mutual potential energy is completely “liberated” and serves as a conduit to transfer rotational and translational KE
$u_{12} = -G \int_{B_1} \int_{B_2} \frac{dm_1 dm_2}{|\rho_{12}|}$
Orbital Evolution

\[\Delta T_{\text{rot}} + \Delta T_{\text{trans}} + \Delta u_{12} = 0 \]

\[u_{11} = \text{Constant} \]

\[u_{22} = \text{Constant} \]
Asteroid Fission

- Rotation periods for fission can be much longer than the surface disruption value of \(\sim 2.5 \) hours.

Value of 1 is orbital rate at the surface of a sphere of given mass.

Two spheres resting on each other will fission at up to twice the period.

If bodies are non-spherical, fission periods are much longer.
Itokawa

Head and Body will orbit at a ~ 6 hour period
Orbit Mechanics after Fission

- The relevant energy for orbital motion is the “free energy,” which is conserved under dynamical evolution:

\[
E_{\text{Free}} = E - \mathcal{U}_{11} - \mathcal{U}_{22}
\]

\[
E_{\text{Free}} = \frac{1}{2} \left[\omega_1 \cdot I_1 \cdot \omega_1 + \omega_2 \cdot I_2 \cdot \omega_2 + \frac{M_1 M_2}{M_1 + M_2} V \cdot V \right] + \mathcal{U}_{12}
\]

- Energy transfer between orbit and rotation happen rapidly
 - If \(E_{\text{Free}} > 0 \), system can “catastrophically disrupt”
 - If \(E_{\text{Free}} < 0 \), system cannot “catastrophically disrupt”

- Orbits with \(E_{\text{Free}} > 0 \) are highly unstable and usually will send the components away on hyperbolic orbits
Orbital Equilibrium
OE(1,3)

Resting Equilibrium
RE(1,3)
Post-Fission Dynamics

- Orbital stability depends on mass distribution

$1 \times 0.63 \times 0.53$
1 x 0.5 x 0.25
Proto-binaries remain susceptible to disruption if initially unstable

D.J. Scheeres, Associate Professor of Aerospace Engineering, The University of Michigan
Increase ellipsoid spin rate by ~2 to cause $E > 0$.

Eccentricity
Discussion

- Minimum energy for catastrophic disruption of an asteroid
 \[\omega > \text{Fission limit} \]
 \[E_{\text{Free}} > 0 \text{ or } \]

 Kinetic Energy > - Mutual Potential

\[\frac{1}{2} I_0 \omega \cdot \omega > -U_{12} \]

- A direct function of how the body is fragmented, or how its mass is distributed
- The fission spin limit is much less than the surface disruption limit, and can approach 2.4 revs/day
- If the body has modest strength, the fission spin rate will be faster and the initial system will have a higher energy, making CD more likely
Conclusions

• A spinning asteroid rotating less than the surface disruption limit may have sufficient energy to undergo catastrophic disruption
 – A contact binary or fractured asteroid can disrupt directly from a relative equilibrium with no additional external energy
• Spin rates as low as ~10 hours can supply sufficient energy for such disruptions to occur
 – Depends on the mass distribution of the body
• The same applies to comets, which should be susceptible to catastrophic disruption at even slower spin rates due to their lower densities