Thousand Asteroid Light Curve Survey: Preliminary Results

Joseph Masiero
Institute for Astronomy
University of Hawaii

Collaborators: Rob Jedicke (IfA, Hawaii), Stephen Gwyn (CADC), Jeff Larson (USNA), Petr Pravec (Astro. Inst., Prague)

CD07 conference Alicante, Spain June 2007
Motivation

Does asteroid composition and location in the Main Belt affect rotation rate?

What is the binary fraction in the MB?

How does YORP drive the rotation distribution of 1km < D < 10 km bodies?

Are there any big, fast Tumblers???
Asteroid Spin Rate vs Diameter

Pravec et al., 2003 (Asteroids, III)
Survey Coverage

12 deg2 of ecliptic with CFHT/MegaCam
- 3.6 m telescope, ~1 deg2 camera

Phase angles from 10-4 degs

Astrometry initially vs USNO, then internal catalog
- 0.1" accuracy

Photometry accuracy to 0.01-0.02 mags (to $g' \sim$ 19 mag)

~1000 asteroids $g' < 22$ mag

Orbits, periods, amplitudes, g'-r' colors, coarse light curves

~10 objects w/ period < 2 hours

~300 objects w/ 2 hours < period < 4 hours

~50 asteroids $D < 0.5$ km
Thousand Asteroid Light Curve Survey (TALCS) Observing Scheme

Exposure Times:

- 20 sec
- 30 sec
- 30 sec
- 40 sec (r′)

TTI:
- 2 min
- 7.5 min
- 15 min
- 17 min (r′)

Green: Superfast Rotator Survey
Blue: Fast Rotator Survey
Red: Wide Field Survey

20.4 hours, 1085 images
<table>
<thead>
<tr>
<th></th>
<th>Sept.</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Orbit: 2 2-hour blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superfast: 1.5 hours</td>
<td>Wide: 3 hours</td>
<td>Long Period: 4 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast: 3.3 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r’ filter: 3 hours</td>
</tr>
</tbody>
</table>

Observing Timeline

- Orbit: 2 2-hour blocks
- Superfast: 1.5 hours
- Fast: 3.3 hours
- Wide: 3 hours
- Long Period: 4 hours
- Orbit: 1.6 hours
- r’ filter: 3 hours
Typical Results from a one-night survey with MegaCam
Sample TALCS lightcurve for H_v=14 object
One day lightcurve results

~6 hours
Sample TALCS lightcurve for H_v=13.5 object
Sample TALCS lightcurve for H_v=12.5 object
Future Work:

• Full a-e-i determination for ~1000 objects
• Lightcurve fitting using multi-order sinusoids
• Static-sky subtraction
Follow-up Observations:

• UH 2.2m recovery and dense light curve samples
• Polarimetry with DBIP on UH 2.2m
• Pan-STARRS 1 recovery
Polarimetry
Polarization via Coherent Backscattering

Muinonen et al., 2003 (Asteroids III)
Polarization via Coherent Backscattering

Muinonen et al., 2003 (Asteroids III)
Polarization via Coherent Backscattering

Muinonen et al., 2003 (Asteroids III)
Polarization via Coherent Backscattering

Muinonen et al., 2003 (Asteroids III)
Polarization via Coherent Backscattering

Muinonen et al., 2003 (Asteroids III)
Polarization-Phase Angle-Type relation

\[\log (\text{albedo}) = -\log (h) - 1.78 \]

Zellner et al., 1974
Dual Beam Imaging Polarimeter

First Light: 3/22/07
Polarized Standard

![Diagram showing percent polarization vs. rotation stage angle with labeled curves Q, U, and P_tot.](image)
“Unpolarized” Standard

![Graph showing percent polarization vs. rotation stage angle with markers for Q, U, and P_tot.](image-url)
Polarized Measurements of asteroid 16 Psyche
Calibration Results

Halfwave mode:

- Single measurement noise on polarization: 0.03%
- Systematic error: ~0.06%
- Polarized standards confirmed to within 2.5-sigma
- Optical offset of 9.23 +/- 0.32 degrees

Full-Stokes Mode:

- Operational in August 2007