The overall goal of this note is to understand the covariance terms in the error propagation formula. Most of what I am going to say is a rehash of the work by Kai Oliver Arras. Our goal is to determine the uncertainty (variance) of a quantity z that is a function of m random variables $q^{(1)}, q^{(2)}, \ldots, q^{(m)}$ whose distribution functions we know. In other words, we wish to know the distribution of z values, $P(z)$, given $z = f(q^{(1)}, q^{(2)}, \ldots, q^{(m)})$. If f is non-linear, then $P(z)$ can be very complex. Therefore, we wish to derive an approximation for $P(z)$.

1 1-D Case

Consider the function $f(q)$ shown in Figure 1. We would like to known how the distribution of q values “propagates” through the function f to produce the distribution of z values $P(z)$. If the function is highly non-linear, the shaded region in the distribution of q values will be mapped nonuniformly into $P(z)$ resulting in a distorted and asymmetric distribution. We will in the end, however, characterize $P(z)$ by its mean and variance no matter what its shape.

![Figure 1: 1-D error propagation.](dmtwww.epfl.ch/ist/asl/publications/arrasTR9801R3.pdf)
\[z = f(q) \approx f(\mu_q) + \frac{\partial f}{\partial q}_{\mu_q} (q - \mu_q) \]

This equation represents the dashed line in Figure 1.

We are now in a position to determine the mean and variance of the output \(z \) value using the standard formulas for the mean and variance of a set of data, namely,

\[
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \quad (2)
\]

\[
\sigma^2_{\mu} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \quad (3)
\]

The mean value of \(P(z) \) is given by,

\[
\mu_z = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mu_q) + \frac{\partial f}{\partial q}_{\mu_q} (q_i - \mu_q) \right) \quad (4)
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} f(\mu_q) + \frac{1}{n} \frac{\partial f}{\partial q}_{\mu_q} \sum_{i=1}^{n} (q_i - \mu) \quad (5)
\]

\[
= f(\mu_q) \quad (6)
\]

since by the definition of the mean value, \(\sum_{i=1}^{n} (q_i - \mu_q) = 0 \).

The variance of \(P(z) \) is given by,

\[
\sigma^2_z = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mu_q) + \frac{\partial f}{\partial q}_{\mu_q} (q_i - \mu_q) - \mu_z \right)^2 \quad (7)
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q}_{\mu_q} (q_i - \mu_q) \right)^2 \quad (8)
\]

\[
= \left(\frac{\partial f}{\partial q}_{\mu_q} \right)^2 \frac{1}{n} \sum_{i=1}^{n} (q_i - \mu_q)^2 \quad (9)
\]

\[
= \left(\frac{\partial f}{\partial q}_{\mu_q} \right)^2 \sigma^2_q \quad (10)
\]

So we have the following two equations to propagate the error of a value \(q \) through a function \(z = f(q) \),
\[\mu_z = f(\mu_q), \quad \sigma_z^2 = \left(\frac{\partial f}{\partial q} \bigg|_{\mu_q} \right)^2 \sigma_q^2 \]

(11)

It must be noted that the values \(\mu_z \) and \(\sigma_z^2 \) are only approximations to the true distribution of the values of \(z \).

2 n-D Case

In this section, we will concentrate on the situation described in the introduction, namely when \(q \) depends on multiple random variables.

The Taylor expansion around the values \(\mu^{(1)}, \mu^{(2)}, \ldots \) is given by,

\[z = f(q^{(1)}, q^{(2)}, \ldots) \simeq f(\mu^{(1)}, \mu^{(2)}, \ldots) + \sum_{i=1}^{m} \frac{\partial f}{\partial q^{(i)}}(q^{(i)} - \mu^{(i)}) \]

(12)

where for clarity we omit the explicit evaluation of the derivative at the mean value. We again compute the mean and variance of the \(z \) values using Equations 2 and 3,

\[\mu_z = \frac{1}{n} \sum_{i=1}^{n} \left[f(\mu^{(1)}, \mu^{(2)}, \ldots) + \sum_{j=1}^{m} \frac{\partial f}{\partial q^{(j)}}(q^{(j)} - \mu^{(j)}) \right] \]

(13)

\[= \frac{1}{n} \sum_{i=1}^{n} f(\mu^{(1)}, \mu^{(2)}, \ldots) + \frac{1}{n} \sum_{j=1}^{m} \frac{\partial f}{\partial q^{(j)}} \sum_{i=1}^{n} (q^{(j)} - \mu^{(j)}) \]

(14)

\[= f(\mu^{(1)}, \mu^{(2)}, \ldots) \]

(15)

since by the definition of the mean, \(\sum_{i=1}^{n} (q^{(j)} - \mu^{(j)}) = 0 \) for each \(j \).

The variance of \(P(z) \) is,

\[\sigma_z^2 = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mu^{(1)}, \mu^{(2)}, \ldots) + \sum_{j=1}^{m} \frac{\partial f}{\partial q^{(j)}}(q^{(j)} - \mu^{(j)}) - \mu_z \right)^2 \]

(16)

\[= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \frac{\partial f}{\partial q^{(j)}}(q^{(j)} - \mu^{(j)}) \right)^2 \]

(17)

\[= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \frac{\partial f}{\partial q^{(j)}}(q^{(j)} - \mu^{(j)}) \sum_{k=1}^{m} \frac{\partial f}{\partial q^{(k)}}(q^{(k)} - \mu^{(k)}) \right), \]

(18)
where we have expanded the square in Equation 17 by subscripting the sum with a \(j \) and \(k \). Expanding the multiplication of sums we have,

\[
\sigma_z^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=k=1}^{m} \left(\frac{\partial f}{\partial q^{(j)}} \right)^2 (q_i^{(j)} - \mu^{(j)})^2 + \right. \\
\left. \sum_{j=1}^{m} \sum_{k \neq j} \frac{\partial f}{\partial q^{(j)}} \frac{\partial f}{\partial q^{(k)}} (q_i^{(j)} - \mu^{(j)})(q_i^{(k)} - \mu^{(k)}) \right]
\]

where the first term in the bracket comes from when \(j = k \) and the second term comes from the cross terms when \(j \neq k \). Now moving the sum over \(n \) into the brackets we have,

\[
\sigma_z^2 = \sum_{j=1}^{m} \left(\frac{\partial f}{\partial q^{(j)}} \right)^2 \frac{1}{n} \sum_{i=1}^{n} (q_i^{(j)} - \mu^{(j)})^2 + \\
2 \sum_{j=1}^{m} \sum_{k \neq j} \frac{\partial f}{\partial q^{(j)}} \frac{\partial f}{\partial q^{(k)}} \frac{1}{n} \sum_{i=1}^{n} (q_i^{(j)} - \mu^{(j)})(q_i^{(k)} - \mu^{(k)})
\]

\[
= \sum_{j=1}^{m} \left(\frac{\partial f}{\partial q^{(j)}} \right)^2 \sigma^{(j)2} + \sum_{j=1}^{m} \sum_{k \neq j} \frac{\partial f}{\partial q^{(j)}} \frac{\partial f}{\partial q^{(k)}} \frac{1}{n} \sum_{i=1}^{n} (q_i^{(j)} - \mu^{(j)})(q_i^{(k)} - \mu^{(k)})
\]

If we define \(\sigma_{jk}^2 \), the covariance, to be,

\[
\sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} (q_i^{(j)} - \mu^{(j)})(q_i^{(k)} - \mu^{(k)})
\]

then Equation 21 becomes,

\[
\sigma_z^2 = \sum_{j=1}^{m} \left(\frac{\partial f}{\partial q^{(j)}} \right)^2 \sigma^{(j)2} + \sum_{j=1}^{m} \sum_{k \neq j} \frac{\partial f}{\partial q^{(j)}} \frac{\partial f}{\partial q^{(k)}} \sigma_{jk}^2
\]

2.1 2D Case

As a concrete example, let’s look at the case where \(z \) depends on two variables. In this case, \(m = 2 \) and the variance becomes,

\[
\sigma_z^2 = \left(\frac{\partial f}{\partial q^1} \right)^2 \sigma^{(1)2} + \left(\frac{\partial f}{\partial q^2} \right)^2 \sigma^{(2)2} + \frac{\partial f}{\partial q^{(1)}} \frac{\partial f}{\partial q^{(2)}} \sigma_{12}^2 + \frac{\partial f}{\partial q^{(2)}} \frac{\partial f}{\partial q^{(1)}} \sigma_{21}^2
\]
Since $\sigma_{12} = \sigma_{21}$, we can rewrite this as,

$$\sigma_z^2 = \left(\frac{\partial f}{\partial q^1} \right)^2 \sigma^{(1)2} + \left(\frac{\partial f}{\partial q^2} \right)^2 \sigma^{(2)2} + 2 \frac{\partial f}{\partial q^{(1)}} \frac{\partial f}{\partial q^{(2)}} \sigma_{12}^2$$ \hspace{1cm} (25)

If we substitute x and y for q^1 and q^2 we have the more familiar form for the variance of z,

$$\sigma_z^2 = \left(\frac{\partial f}{\partial x} \right)^2 \sigma^{(x)2} + \left(\frac{\partial f}{\partial y} \right)^2 \sigma^{(y)2} + 2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \sigma_{xy}^2$$ \hspace{1cm} (26)