Ten Years of Triton Spectral Monitoring with IRTF/SpeX - Observed every year since 2000, now more than 50 nights, looking for transient events. Takes just a few hours – perfect for remote observing. - No sign of transient events so far, but spectacular detail on longitudinal distribution of ices, and also hints of secular evolution. - Reference: Grundy, Young, Stansberry, Buie, Olkin, and Young 2010. Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus 205, 594-604. #### Average Triton Spectrum # Measure Absorption Band Variation as Triton Rotates #### **Triton Summary** - Big N₂ ice enhancement on Neptune-facing hemisphere. - CO ice is similar. Co-occurs with N₂ ice. - CH₄ ice is different. More concentrated on trailing hemisphere. - H₂O and CO₂ ices do not vary. Globally distributed, or only at high latitudes. ### More CH_4 Details: Dilution in N_2 Ice #### More CH, Details: Stratigraphy ## Complex CH₄ Ice Behavior - Longitudinal pattern is very different from N_2 ice, but wavelength shift says CH_4 is mostly diluted in N_2 ice. - Wavelength shift varies with longitude, with least shift (least dilution) on the trailing hemisphere, where CH₄ absorption is strongest. - Stronger CH₄ bands (which probe shallower) show lower amplitude variation than weaker bands (which probe deeper). - Suggests a concentration of CH₄-rich ice below the surface, localized around 300° E longitude. ## Where Is This CH₄-Rich Region? ### Secular Evolution of N₂ Ice? Dashed curve is sine fit to all data. Solid curves are sines fit to 2000-2004 and 2005-2009 subsets. Amplitude drop is not quite 3-σ. Needs to be confirmed.